98%
921
2 minutes
20
Many biological and soft matter processes occur at high speeds in complex three-dimensional (3D) environments, and developing imaging techniques capable of elucidating their dynamics is an outstanding challenge. Here, we introduce Fourier synthesis optical diffraction tomography (FS-ODT), a quantitative phase imaging approach capable of recording the 3D refractive index at kilohertz rates. FS-ODT introduces computational strategies that multiplex tens of illumination angles in a single tomogram, markedly increasing the volumetric imaging rate. We validate FS-ODT on samples of known composition, hindered diffusion of colloids in solution, and the motility of bacterial swimmers. We also integrate FS-ODT into a multimodal microscope combining refractive index imaging with multicolor structured illumination microscopy. FS-ODT is a promising approach for unlocking imaging regimes that have been little explored, including understanding the physical interactions of colloids and microswimmers with their 3D environment and the interplay between these stimuli and the molecular response of biological systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12346287 | PMC |
http://dx.doi.org/10.1126/sciadv.adr8004 | DOI Listing |
Food Chem
September 2025
Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China. Electronic address:
Amino acid surfactants have garnered increasing attention as green and safe alternatives. Bioinspired by the melanogenesis pathway, this study developed a novel melanin-like amino acid surfactant with a melanin mimetic structure by conjugating glycine to o-quinone. Pterostilbene, a versatile natural monophenol, was oxidized to form o-quinone crystals by 2-iodoxybenzoic acid in a manner analogous to tyrosinase.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Clinical Pharmacy, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
The global rise in antibiotic resistance demands the urgent development of new antibacterial agents. This study investigated the antibacterial potential of four synthesized methoxy and thiophene chalcone derivatives (designated 3a, 4a, 3b, and 4b) against clinically relevant bacterial pathogens. These compounds were prepared through Claisen-Schmidt condensation, while their chemical structures were verified through applying Fourier-transform infrared, mass spectrometry, H nuclear magnetic resonance (NMR), and C NMR.
View Article and Find Full Text PDFDalton Trans
September 2025
Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
This study comprehensively analyses two new ruthenium(III) complexes, [RuCl(Nic)][(CH)NH]DMF, 1, and [RuCl(3-HPA)][3-HHPA](EtOH), 2, (where Nic = nicotinic acid (vitamin B3), 3-HPA = anion of a 3-hydroxypicolinic acid), as potential antimicrobial agents, highlighting their physicochemical properties, nanoparticle formation, and cytotoxic activity. The complexes were fully characterised by a single crystal X-ray diffraction technique, Fourier-transform infrared, energy-dispersive X-ray, and electron paramagnetic resonance spectroscopies. The synthesis of micro- and nanoparticles (NPs) of these complexes was performed using the liquid anti-solvent crystallisation method.
View Article and Find Full Text PDFFood Res Int
November 2025
Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China. Electronic address:
This study employed high-pressure microfluidization (HPM) to facilitate the Maillard reaction between quinoa protein (QP) and dextran (DX), systematically examining the effects of various pressures on the conjugate's physicochemical properties. Fourier transform infrared spectroscopy confirmed the formation of QP-DX conjugates, characterized by a new peak at 1149 cm (covalent CN bond). Secondary and tertiary structure analyses revealed that HPM-assisted Maillard reaction partially unfolded QP molecules, enhancing conformational flexibility and interfacial properties.
View Article and Find Full Text PDFACS Omega
September 2025
Research Laboratory in bionanomaterials, LPbio, Department of Chemistry, Federal University of Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
Herein, it is reported the synthesis of a niobium-based metal-organic framework (MOF), [Nb-(Bez-(COO))] , for the extraction of caffeine from surface waters. The material was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis, which confirmed the coordination between the ligand (1,4-benzenodicarboxylic, (Bez-(COO))) and niobium (Nb) with a morphology composed of hexagonal rods, high crystallinity, and a surface area of 94.7 m g.
View Article and Find Full Text PDF