98%
921
2 minutes
20
Objectives: Finding certain biomarkers and threshold values of periodontitis and incorporating them into classifications can further highlight its impact on systemic health. This cross-sectional observational study aims to evaluate the efficacy of some biomarkers in grading periodontitis using artificial intelligence (AI) models.
Methodology: AI models were developed to automatically classify periodontal status (N=240) and grades in periodontitis patients (n=120) using Python based on sociodemographic, anthropometric, clinical, radiological, and biochemical attributes. A total of 35 serum levels of whole blood attributes (white blood cell (WBC), platelet, erythrocyte, neutrophil, lymphocyte counts, and mean platelet volume), lipid profile [triglycerides; high-, low-, and very low-density lipoproteins (HDL, LDL, VLDL), and total cholesterol levels], salivary and serum interleukin (IL)-1β and matrix metalloproteinase (MMP)-8 levels), and 11 other attributes were used in the current classification.
Results: In total, 23 out of 46 attributes achieved a 0.967 classification accuracy, whereas nine, a 0.858 classification accuracy. Attributes such as WBC, serum IL- 1β, triglyceride/HDL ratio, neutrophil/lymphocyte ratio, and HDL were instrumental in periodontal status classification. HDL, LDL, neutrophil/lymphocyte ratio, total cholesterol, salivary IL-1β, and MMP-8 were key attributes in grading.
Conclusions: AI models showed significant classification accuracy, particularly with serum and salivary IL-1β levels and other blood parameters, underscoring the potential of these biomarkers, which could be integrated into the current classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/1678-7757-2024-0580 | DOI Listing |
Anal Methods
September 2025
College of Science, Kunming University of Science and Technology, Kunming, 650500, China.
To address the technical challenges associated with determining the chronological order of overlapping stamps and textual content in forensic document examination, this study proposes a novel non-destructive method that integrates hyperspectral imaging (HSI) with convolutional neural networks (CNNs). A multi-type cross-sequence dataset was constructed, comprising 60 samples of handwriting-stamp sequences and 20 samples of printed text-stamp sequences, all subjected to six months of natural aging. Spectral responses were collected across the 400-1000 nm range in the overlapping regions.
View Article and Find Full Text PDFACS Sens
September 2025
Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.
View Article and Find Full Text PDFInt J Paediatr Dent
September 2025
Lokman Hekim University, Faculty of Dentistry, Department of Pediatric Dentistry, Ankara, Turkey.
Background: Differentiating between primary and permanent teeth is a critical component of oral health knowledge, influencing both preventive care and clinical decisions. With the growing use of artificial intelligence (AI) in healthcare and education, its role in supporting learning is of increasing interest.
Aim: This study evaluated the diagnostic accuracy and internal consistency of ChatGPT-4.
J Imaging Inform Med
September 2025
Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.
Large language models (LLMs) have been successfully used for data extraction from free-text radiology reports. Most current studies were conducted with LLMs accessed via an application programming interface (API). We evaluated the feasibility of using open-source LLMs, deployed on limited local hardware resources for data extraction from free-text mammography reports, using a common data element (CDE)-based structure.
View Article and Find Full Text PDFImmunol Res
September 2025
Department of Immunology and Allergy, Faculty of Medicine, Necmettin Erbakan University, Konya, Türkiye.
Background: Variants of uncertain significance (VUS) represent a major diagnostic challenge in the interpretation of genetic testing results, particularly in the context of inborn errors of immunity such as severe combined immunodeficiency (SCID). The inconsistency among computational prediction tools often necessitates expensive and time-consuming wet-lab analyses.
Objective: This study aimed to develop disease-specific, multi-class machine learning models using in silico scores to classify SCID-associated genetic variants and improve the interpretation of VUS.