98%
921
2 minutes
20
In this study, we demonstrate that a room-temperature reactively sputtered aluminum oxynitride (AlON) overlayer enables both effective doping and pronounced threshold voltage hysteresis in multilayer MoS FETs, while preserving field-effect mobility. Compared to conventional AlO, the AlON layer introduces trap states that are energetically aligned with the conduction band of MoS, facilitating charge exchange across the heterointerface. Capacitance-voltage measurements confirm that nitrogen incorporation reduces the effective fixed charge density, enabling mobility-preserving operation without thermal annealing. Notably, the hysteresis window exhibits a marked expansion above ∼250 K, which correlates with the activation of out-of-plane phonon modes in MoS. These phonons are proposed to assist in activating interfacial trap states within the AlON layer, as supported by temperature-dependent electrical and spectroscopic analyses. While such trap-induced hysteresis may be undesirable for logic circuits, it offers valuable functionality for emerging device architectures─such as in-memory computing and neuromorphic systems─where hysteresis can be exploited. These findings underscore the potential of AlON as a low-temperature-processable dielectric for 2D FETs and advance a new perspective on phonon-assisted interfacial charge modulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c07597 | DOI Listing |
JCI Insight
September 2025
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Patients with Dravet syndrome (DS) present with severe, spontaneous seizures and ataxia. While most patients with DS have variants in the sodium channel Nav1.1 α subunit gene, SCN1A, variants in the sodium channel β1 subunit gene, SCN1B, are also linked to DS.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Integration of ultrathin, high-quality gate insulators is critical to the success of two-dimensional (2D) semiconductor transistors in next-generation nanoelectronics. Here, we investigate the impact of atomic layer deposition (ALD) precursor choice on the nucleation and growth of insulators on monolayer MoS. Surveying a series of aluminum (AlO) precursors, we observe that increasing the length of the ligands reduces the nucleation delay of alumina on monolayer MoS, a phenomenon that we attribute to improved van der Waals dispersion interactions with the 2D material.
View Article and Find Full Text PDFFront Physiol
August 2025
Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
Background: Pulsed electric field ablation (PFA) techniques for treating cardiac arrhythmias have attracted considerable interest. For example, atrial fibrillation can be effectively treated by pulmonary vein isolation using PFA. However, some arrhythmias originate deep within the myocardium, making them difficult to reach with conventional ablation methods.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Electronic Information & Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China.
The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.
View Article and Find Full Text PDFSci Rep
September 2025
Fukushima Renewable Energy Institute, Koriyama, 963-0298, Japan.
This study proposes a novel and computationally efficient method for real-time identification and localization of power quality (PQ) disturbances in microgrids using dynamic Lissajous patterns formed by voltage and current waveforms. Each power disturbance-such as sag, swell, harmonic distortion, and transients-induces a unique geometric deformation in the Lissajous figure, which serves as a visual signature of the event. Key geometric and statistical features, including area, skewness, kurtosis, and centroid deviation, are extracted from these dynamic patterns to construct robust indices for classification.
View Article and Find Full Text PDF