98%
921
2 minutes
20
Graphene's exceptional carrier mobility and broadband absorption make it promising for ultrafast photodetection. However, its low optical absorption limits responsivity, while the absence of a bandgap results in high dark current, constraining the signal-to-noise ratio and efficiency. Although silicon (Si) photodetectors normally offer fabrication compatibility, their performance is severely hindered by interface trap states and optical shading. To overcome these limitations, we demonstrate an epitaxial graphene/n-Si heterojunction photodiode. This device utilizes graphene epitaxially grown on germanium integrated with a transferred Si thin film, eliminating polymer residues and interface defects common in transferred graphene. As a result, the fabricated photodetector achieves an ultralow dark current of 1.2 × 10 A, a high responsivity of 1430 A/W, and self-powered operation at room temperature. This work provides a strategy for high-sensitivity and low-power photodetection and demonstrates the practical integration potential of graphene/Si heterostructures for advanced optoelectronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348325 | PMC |
http://dx.doi.org/10.3390/nano15151190 | DOI Listing |
eNeuro
September 2025
Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL35294 and.
The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.
View Article and Find Full Text PDFRep Prog Phys
September 2025
Physics Department and Center for Experimental Nuclear Physics and Astrophysics, University of Washington, box 351560, Seattle, Washington, 98195-1560, UNITED STATES.
Proposed half a century ago, the quantum chromodynamics (QCD) axion explains the lack of charge and parity violation in the strong interactions and is a compelling candidate for cold dark matter. The last decade has seen the rapid improvement in the sensitivity and range of axion experiments, as well as developments in theory regarding consequences of axion dark matter. We review here the astrophysical searches and theoretical progress regarding the QCD axion.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing, 100101, Peoples Republic of China.
The Dark Energy Spectroscopic Instrument (DESI) is a massively parallel spectroscopic survey on the Mayall telescope at Kitt Peak, which has released measurements of baryon acoustic oscillations determined from over 14 million extragalactic targets. We combine DESI Data Release 2 with CMB datasets to search for evidence of matter conversion to dark energy (DE), focusing on a scenario mediated by stellar collapse to cosmologically coupled black holes (CCBHs). In this physical model, which has the same number of free parameters as ΛCDM, DE production is determined by the cosmic star formation rate density (SFRD), allowing for distinct early- and late-time cosmologies.
View Article and Find Full Text PDFAdv Mater
September 2025
Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, 071002, China.
Neuromorphic Visual Devices hold considerable promise for integration into neuromorphic vision systems that combine sensing, memory, and computing. This potential arises from their synergistic benefits in optical signal detection and neuro-inspired computational processes. However, current devices face challenges such as insufficient light/dark resistance ratios, mismatched transient photo-response, and volatile retention characteristics, limiting their adaptability to complex artificial vision systems.
View Article and Find Full Text PDFCongenital dyserythropoietic anemia type III (CDA III) is an extremely rare inherited disorder characterized by ineffective erythropoiesis, multinucleated erythroblasts in the bone marrow, and variable clinical gravity. We report the case of a 6-year-old boy, presenting with abdominal distension, failure to thrive, dark urine, intermittent itching, and recurrent infections. Physical examination revealed pallor, hepatomegaly, and splenomegaly.
View Article and Find Full Text PDF