98%
921
2 minutes
20
Various diffusion MRI (dMRI) preprocessing pipelines are currently available to yield more accurate diffusion parameters. Here, we evaluated accuracy and robustness of the optimized Diffusion parameter EStImation with Gibbs and NoisE Removal (DESIGNER) pipeline in a large clinical dMRI dataset and using ground-truth phantoms. DESIGNER, a preprocessing pipeline targeting various imaging artifacts in diffusion MRI data, has been modified to improve denoising and target Gibbs ringing for partial Fourier acquisitions. We compared the revised DESIGNER (Dv2) (including denoising, Gibbs removal, correction for motion, echo planar imaging (EPI) distortion, and eddy currents) against the original DESIGNER (Dv1) pipeline, minimal preprocessing (including correction for motion, EPI distortion, and eddy currents only), and no preprocessing on a large clinical dMRI dataset of 524 control subjects with ages between 25 and 75 years old. We evaluated the effect of specific processing steps on age correlations in white matter with diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) metrics. We also evaluated the added effect of minimal Gaussian smoothing to deal with noise and to reduce outliers in parameter maps compared to DESIGNER-v2's noise removal method. Moreover, Dv2's updated noise and Gibbs removal methods were assessed using a ground truth dMRI phantom to evaluate accuracy. Results show age correlations of DTI and DKI metrics in white matter were affected by the preprocessing pipeline, causing systematic differences in absolute parameter values and loss or gain of statistical significance. Both in clinical dMRI and ground-truth phantoms, Dv2 pipeline resulted in the smallest number of outlier voxels and improved accuracy in DTI and DKI metrics as noise was reduced and Gibbs removal was improved. Thus, DESIGNER-v2 provides more accurate and robust DTI and DKI parameter maps by targeting common artifacts present in dMRI data acquired in clinical settings, as compared to no preprocessing or minimal preprocessing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247605 | PMC |
http://dx.doi.org/10.1162/imag_a_00125 | DOI Listing |
Bioinformatics
September 2025
Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.
Summary: Dynamic models represent a powerful tool for studying complex biological processes, ranging from cell signalling to cell differentiation. Building such models often requires computationally demanding modelling workflows, such as model exploration and parameter estimation. We developed two Julia-based tools: SBMLImporter.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Professor & Head, Department of Artificial Intelligence and Machine Learning, K S Institute of Technology.
Knee osteoarthritis (KOA) affects millions of individuals worldwide and has no known curative treatment, making it a serious global health concern. The management of its development depends on early discovery, and X-ray imaging is a fundamental diagnostic technique. However, due to variations in radiologists' levels of experience, manual X-ray interpretation increases variability and possible inaccuracies.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Universidad Internacional Iberoamericana, Arecibo, PR, United States.
Electrocardiogram (ECG) classification plays a critical role in early detection and trocardiogram (ECG) classification plays a critical role in early detection and monitoring cardiovascular diseases. This study presents a Transformer-based deep learning framework for automated ECG classification, integrating advanced preprocessing, feature selection, and dimensionality reduction techniques to improve model performance. The pipeline begins with signal preprocessing, where raw ECG data are denoised, normalized, and relabeled for compatibility with attention-based architectures.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2025
Department of Ophthalmology, People's Hospital of Feng Jie, Chongqing, 404600, China. Electronic address:
Objective: This study aims to develop a robust, multi-task deep learning framework that integrates vessel segmentation and radiomic analysis for the automated classification of four retinal conditions- diabetic retinopathy (DR), hypertensive retinopathy (HR), papilledema, and normal fundus-using fundus images.
Materials: AND.
Methods: A total of 2,165 patients from eight medical centers were enrolled.
PLoS Comput Biol
September 2025
Arbovirus and Entomology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
This study addresses the pressing global health burden of mosquito-borne diseases by investigating the application of Convolutional Neural Networks (CNNs) for mosquito species identification using wing images. Conventional identification methods are hampered by the need for significant expertise and resources, while CNNs offer a promising alternative. Our research aimed to develop a reliable and applicable classification system that can be used under real-world conditions, with a focus on improving model adaptability to unencountered devices, mitigating dataset biases, and ensuring usability across different users without standardized protocols.
View Article and Find Full Text PDF