Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Tauopathies are a group of neurodegenerative diseases characterized by tau accumulation, neuroinflammation, and synaptic dysfunction, yet effective treatments remain elusive. Protein Kinase CK2 has been previously associated with different aspects of tau pathology but genetic evidence for the contribution of CK2 to tauopathy remained lacking.

Methods: We used cell and mouse models to explore the impact of CK2α' in tauopathy. We explored our hypothesis using molecular, biochemical, behavioral and electrophysiological techniques.

Results: Here, we show CK2α', one of the two catalytic subunits of CK2, as a novel regulator of tau-mediated neurodegeneration. We found that CK2α' expression is elevated in the hippocampus of PS19 tauopathy mice and in postmortem brains of dementia patients, particularly in neurons and microglia. Using genetic haploinsufficiency in PS19 mice, we demonstrated that reduced CK2α' levels significantly decrease phosphorylated tau and total tau burden in the hippocampus and cortex. CK2α' depletion also enhanced synaptic gene expression, synaptic density, and LTP, while attenuating microglial activation, synaptic engulfment, and pro-inflammatory cytokine levels. Importantly, CK2α' depletion rescued cognitive deficits assessed in the Barnes maze. These effects appear to be mediated through both neuronal and glial functions and may involve CK2α'-dependent modulation of tau-associated phosphorylation and neuroinflammatory and immune signaling pathways.

Conclusions: Our findings highlight CK2α' as a key node at the intersection of tau pathology, synaptic dysfunction, and neuroimmune signaling. Targeting CK2α' may offer a novel and selective therapeutic strategy for modifying disease progression in tauopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12340896PMC
http://dx.doi.org/10.21203/rs.3.rs-7078069/v1DOI Listing

Publication Analysis

Top Keywords

synaptic dysfunction
12
ck2α'
9
protein kinase
8
neuroimmune signaling
8
tau pathology
8
ck2α' depletion
8
synaptic
6
tau
5
kinase ck2α'
4
ck2α' dual
4

Similar Publications

Neuroavailable peptides from hempseed protein hydrolysates reduce hippocampal inflammation and glial activation in a scopolamine-induced Alzheimer's disease.

Biomed Pharmacother

September 2025

Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment, synaptic dysfunction, and neuronal loss. Neuroinflammation, driven by the activation of microglia and astrocytes, is a key contributor to AD pathology, amplifying oxidative stress and amyloid-β toxicity. Modulation of neuroinflammatory pathways thus represents a promising therapeutic strategy.

View Article and Find Full Text PDF

Steering Axon Development: Glial Cell Mechanisms in .

ACS Chem Neurosci

September 2025

School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.

Glial cells play an indispensable role in the nervous system, providing structural support to neurons and regulating their function and development. Glia support neural network formation and plasticity in axon guidance, synaptic pruning, and neurogenesis. Of note, studies have shown that glial cell dysfunction is closely related to the occurrence of neurological diseases.

View Article and Find Full Text PDF

Downregulation of Nrf2 deteriorates cognitive impairment in APP/PS1 mice by inhibiting mitochondrial biogenesis through the PPARγ/PGC1α signaling pathway.

Behav Brain Res

September 2025

Department of neurology, Hebei Medical University Third Hospital, Hebei 050000,Shijiazhuang,China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei 050000,Shijiazhuang,China. Electronic address:

Background: Mitochondrial dysfunction is considered to be an important pathogenesis of cognitive impairment in Alzheimer's disease(AD). Activation of Nrf2 can improve cognitive impairment in AD mice, but the underlying mechanism remains to be elucidated. This research aims to investigate the intrinsic molecular mechanism of Nrf2 in mitochondrial biogenesis related to cognitive impairment of AD mice.

View Article and Find Full Text PDF

Cerebrovascular protective functions of amyloid precursor protein: Progress and therapeutic prospects.

Pharmacol Ther

September 2025

Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA; Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.

Under physiological conditions, amyloid precursor protein (APP) is critically important for normal brain development, neurogenesis, neuronal survival, and synaptic signaling. Dyshomeostasis of APP increases deposition and accumulation of amyloid β (Aβ) in the brain parenchyma and cerebral blood vessels thereby leading to development of Alzheimer's disease and cerebral amyloid angiopathy. In this review, we critically examine existing literature supporting the concept that endothelial APP performs important vascular protective functions in the brain.

View Article and Find Full Text PDF

Therapeutic potential of small peptides in Alzheimer's disease: Advances in memory restoration and targeted delivery systems.

Neuropeptides

September 2025

Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Despite extensive research into Alzheimer's disease (AD), few therapeutic strategies have successfully addressed its core pathology at the synaptic level. Small peptides represent a promising class of therapeutic agents capable of modulating key molecular pathways involved in amyloid toxicity, tau hyperphosphorylation, and synaptic degeneration. Their unique ability to cross biological barriers, interact with intracellular targets, and be modified for enhanced stability positions them as viable candidates for next-generation treatments targeting cognitive decline in AD.

View Article and Find Full Text PDF