Background: Tauopathies are a group of neurodegenerative diseases characterized by tau accumulation, neuroinflammation, and synaptic dysfunction, yet effective treatments remain elusive. Protein Kinase CK2 has been previously associated with different aspects of tau pathology but genetic evidence for the contribution of CK2 to tauopathy remained lacking.
Methods: We used cell and mouse models to explore the impact of CK2α' in tauopathy.
Pathological aggregation of α-synuclein (αS) is implicated in the pathogenesis of Parkinson's disease (PD) and other α-synucleinopathies. The current view is that neuron-to-neuron spreading of αS pathology contributes to the progression of α-synucleinopathy. We used an A53T mutant human αS transgenic mouse model () to examine whether the site of pathogenic αS inoculation affects the pattern of neuropathology and whether soluble and insoluble fractions derived from crude pathogenic tissue lysates exhibit differential capacities to initiate αS pathology.
View Article and Find Full Text PDFParkinson's disease (PD) and other α-synucleinopathies are characterized by the intracellular aggregates of α-synuclein (αS) believed to spread via the cell-to-cell transmission. To understand the contributions of various brain cells to the spreading of αS pathology, we examined the metabolism of αS aggregates in neuronal and glial cells. In neurons, while the full-length αS rapidly disappeared following αS PFF uptake, truncated αS accumulated with a half-life of days rather than hours.
View Article and Find Full Text PDFPathological aggregation of a-synuclein (aS) is implicated in the pathogenesis of Parkinson's disease (PD) and other a-synucleinopathies. The current view is that neuron-to-neuron spreading of aS pathology contributes to the progression of a-synucleinopathy. We used an A53T mutant human aS transgenic mouse model () to examine whether the site of pathogenic aS inoculation affects the pattern of neuropathology and whether soluble and insoluble fractions derived from crude pathogenic tissue lysates exhibit differential capacities to initiate aS pathology.
View Article and Find Full Text PDFα-Synuclein is a major component of Lewy bodies (LB) and Lewy neurites (LN) appearing in the postmortem brain of Parkinson's disease (PD) and other α-synucleinopathies. While most studies of α-synucleinopathies have focused on neuronal and synaptic alterations as well as dysfunctions of the astrocytic homeostatic roles, whether the bidirectional astrocyte-neuronal communication is affected in these diseases remains unknown. We have investigated whether the astrocyte Ca excitability and the glutamatergic gliotransmission underlying astrocyte-neuronal signaling are altered in several transgenic mouse models related to α-synucleinopathies, i.
View Article and Find Full Text PDFMagn Reson Med
February 2023
Purpose: In current intraoperative MRI (IMRI) methods, an iterative approach is used to aim trajectory guides at intracerebral targets: image MR-visible features, determine current aim by fitting model to image, manipulate device, repeat. Infrequent updates are produced by such methods, compared to rapid optically tracked stereotaxy used in the operating room. Our goal was to develop a real-time interactive IMRI method for aiming.
View Article and Find Full Text PDFTransl Neurodegener
July 2022
Background: Neuronal dysfunction and degeneration linked to α-synuclein (αS) pathology is thought to be responsible for the progressive nature of Parkinson's disease and related dementia with Lewy bodies. Studies have indicated bidirectional pathological relationships between αS pathology and tau abnormalities. We recently showed that A53T mutant human αS (HuαS) can cause post-synaptic and cognitive deficits that require microtubule-associated protein tau expression.
View Article and Find Full Text PDFDegeneration of dopamine (DA) neurons in the midbrain underlies the pathogenesis of Parkinson's disease (PD). Supplement of DA via L-DOPA alleviates motor symptoms but does not prevent the progressive loss of DA neurons. A large body of experimental studies, including those in nonhuman primates, demonstrates that transplantation of fetal mesencephalic tissues improves motor symptoms in animals, which culminated in open-label and double-blinded clinical trials of fetal tissue transplantation for PD.
View Article and Find Full Text PDFPurpose: The aim of this study was to examine whether the translocator protein 18-kDa (TSPO) PET ligand [F]FEPPA has the sensitivity for detecting changes in CD68-positive microglial/macrophage activation in hemiparkinsonian rhesus macaques treated with allogeneic grafts of induced pluripotent stem cell-derived midbrain dopaminergic neurons (iPSC-mDA).
Methods: In vivo positron emission tomography (PET) imaging with [F]FEPPA was used in conjunction with postmortem CD68 immunostaining to evaluate neuroinflammation in the brains of hemiparkinsonian rhesus macaques (n = 6) that received allogeneic iPSC-mDA grafts in the putamen ipsilateral to MPTP administration.
Results: Based on assessment of radiotracer uptake and confirmed by visual inspection of the imaging data, nonhuman primates with allogeneic grafts showed increased [F]FEPPA binding at the graft sites relative to the contralateral putamen.
Abnormal intraneuronal accumulation of the presynaptic protein α-synuclein (α-syn) is implicated in the etiology of dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD). Recent work revealed that mice expressing human α-syn with the alanine-53-threonine (A53T) mutation have a similar phenotype to the human condition, exhibiting long-term potentiation deficits, learning and memory deficits, and inhibitory hippocampal remodeling, all of which were reversed by genetic ablation of microtubule-associated protein tau. Significantly, memory deficits were associated with histological signs of network hyperactivity/seizures.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) G2019S is a relatively common mutation, associated with 1-3% of Parkinson's disease (PD) cases worldwide. G2019S is hypothesized to increase LRRK2 kinase activity. Dopaminergic neurons derived from induced pluripotent stem cells of PD patients carrying LRRK2 G2019S are reported to have several phenotypes compared to wild type controls, including increased activated caspase-3 and reactive oxygen species (ROS), autophagy dysfunction, and simplification of neurites.
View Article and Find Full Text PDFα-Synuclein (α-syn) is a small presynaptic protein distributed ubiquitously in the central and peripheral nervous system. In normal conditions, α-syn is found in soluble form, while in Parkinson's disease (PD) it may phosphorylate, aggregate, and combine with other proteins to form Lewy bodies. The purpose of this study was to evaluate, in nonhuman primates, whether α-syn expression is affected by age and neurotoxin challenge.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) G2019S (glycine to serine) is the most common mutation associated with sporadic and familial Parkinson's disease (PD) with 80% penetrance by age 70. This mutation is found worldwide, with up to 40% of individuals in the North African Arab population carrying the mutation. Induced pluripotent stem cells derived from fibroblasts of patients carrying the LRRK2 G2019S mutation have been a critical source of cells for generating dopaminergic neurons and studying G2019S-related pathology.
View Article and Find Full Text PDFStem Cells Dev
September 2017
The common marmoset monkey (Callithrix jacchus; Cj) is an advantageous nonhuman primate species for modeling age-related disorders, including Parkinson's disease, due to their shorter life span compared to macaques. Cj-derived induced pluripotent stem cells (Cj-iPSCs) from somatic cells are needed for in vitro disease modeling and testing regenerative medicine approaches. Here we report the development of a novel Cj-iPSC line derived from adult marmoset fibroblasts.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
March 2018
Through the course of over three decades, nonhuman primate (NHP) studies on cell-based therapies (CBTs) for Parkinson's disease (PD) have provided insight into the feasibility, safety and efficacy of the approach, methods of cell collection and preparation, cell viability, as well as potential brain targets. Today, NHP research continues to be a vital source of information for improving cell grafts and analyzing how the host affects graft survival, integration and function. Overall, this article aims to discuss the role that NHP models of PD have played in CBT development and highlights specific issues that need to be considered to maximize the value of NHP studies for the successful clinical translation of CBTs.
View Article and Find Full Text PDFInduced pluripotent stem cell (iPSC)-derived neurons represent an opportunity for cell replacement strategies for neurodegenerative disorders such as Parkinson's disease (PD). Improvement in cell graft targeting, distribution, and density can be key for disease modification. We have previously developed a trajectory guide system for real-time intraoperative magnetic resonance imaging (RT-IMRI) delivery of infusates, such as viral vector suspensions for gene therapy strategies.
View Article and Find Full Text PDFAccumulation of α-synuclein (α-syn) leading to the formation of insoluble intracellular aggregates named Lewy bodies is proposed to have a significant role in Parkinson's disease (PD) pathology. Nonhuman primate (NHP) models of PD have proven essential for understanding the neurobiological basis of the disease and for the preclinical evaluation of first-in-class and invasive therapies. In addition to neurotoxin, aging and intracerebral gene transfer models, a new generation of models using inoculations of α-syn formulations, as well as transgenic methods is emerging.
View Article and Find Full Text PDFBackground: We recently developed a nonhuman primate model of cardiac dysautonomia by systemic dosing of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The aim of this study was to assess whether systemic 6-OHDA affects the central nervous system of nonhuman primates, in particular the dopaminergic nigrostriatal system.
Methods: Brain sections from adult rhesus monkeys that received systemic 6-OHDA (50 mg/kg intravenously; n=5) and were necropsied 3 months later, as well as normal controls (n=5) were used in this study.
Degeneration of medium spiny GABA neurons in the basal ganglia underlies motor dysfunction in Huntington's disease (HD), which presently lacks effective therapy. In this study, we have successfully directed human embryonic stem cells (hESCs) to enriched populations of DARPP32-expressing forebrain GABA neurons. Transplantation of these human forebrain GABA neurons and their progenitors, but not spinal GABA cells, into the striatum of quinolinic acid-lesioned mice results in generation of large populations of DARPP32(+) GABA neurons, which project to the substantia nigra as well as receiving glutamatergic and dopaminergic inputs, corresponding to correction of motor deficits.
View Article and Find Full Text PDF