98%
921
2 minutes
20
To realize year-round direct solar-radiation intensity measurement at all latitudes without mobile tracking, this study proposes a measurement method based on multiple off-axis hyperboloids fused with free-form surfaces and a new system architecture composed of direct solar-radiation measurement mirrors and pyroelectric sensors. Simulations showed the irradiance uniformity to be 97.95% and spot energy distribution uniformity to be 91.92% to 94.84%, which are better than those of similar methods in the international field of view. Performance tests also confirmed the correctness and feasibility of the proposed method. This study provides an improved theory and system design for direct solar-radiation intensity measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.546932 | DOI Listing |
J Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China. Electronic address:
Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.
Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Solar Energy Research Centre (CIESOL), Joint Centre of the University of Almería-CIEMAT, Carretera de Sacramento s/n, Almería 04120, Spain.
This work aims to investigate the occurrence of 31 antibiotics (ABs), 2 bacteria ( and spp.) and their counterpart antibiotic-resistant bacteria (carbapenem and cephalosporin families), and several antibiotic-resistant genes (ARGs) throughout a full distribution system of reclaimed water (RW) in a real-scale scenario. The RW was analyzed (i) before and after the tertiary treatment (sand filtration and chlorination), (ii) during the storage period in secondary ponds before its use in irrigation, and (iii) directly in the droppers installed in four plastic-based greenhouses over 9 months.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, China.
The quest for sustainable and clean energy sources has led to significant research into photocatalytic water splitting, a process that converts solar energy into hydrogen fuel. This study demonstrates constructing a high-performance CdTe/CN van der Waals heterojunction for solar-driven water splitting hydrogen evolution. The proposed CdTe/CN heterojunction, investigated using first-principles calculations, integrates favorable structural stability and features a direct bandgap of 1.
View Article and Find Full Text PDF