Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we investigated the functional interplay between bradykinin receptors and the transient receptor potential vanilloid-1 (TRPV1) channel in a mouse model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Lung and bronchoalveolar lavages were collected at 6 and 24 h after the induction of ALI and evaluated for changes in body weight, inflammatory marker levels, lung injury, and TRPV1 expression. Pretreatments with a TRPV1 antagonist (capsazepine) or B and B receptor antagonists, i.e., DALBK and HOE 140, respectively, were evaluated in this ALI mouse model. The histological score revealed higher levels of lung injury in mice treated with LPS (5 and 10 mg/kg), assessed at both 6 and 24 h, compared to the vehicle-treated group. A loss of body weight was observed within 24 h of ALI induction. Furthermore, collagen deposition, pulmonary oedema, leukocyte influx, and increased cytokine levels were also observed following LPS administration. Pretreatment with capsazepine, DALBK, or HOE 140 not only reversed all inflammatory parameters but also prevented the increased expression of TRPV1 observed in the lungs of mice subjected LPS-induced ALI. Our data suggest that, following LPS-induced ALI, bradykinin activates both B and B receptors associated with the subsequent activation of TRPV1. These findings suggest that bradykinin can activate both B and B receptors, which may contribute functionally to TRPV1 upregulation and activation during LPS-induced ALI. This novel pathway appears to sustain inflammation, offering a new therapeutic target for ALI and ARDS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pupt.2025.102384DOI Listing

Publication Analysis

Top Keywords

lung injury
16
lps-induced ali
12
functional interplay
8
interplay bradykinin
8
bradykinin receptors
8
receptors transient
8
transient receptor
8
receptor potential
8
potential vanilloid-1
8
acute lung
8

Similar Publications

Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.

View Article and Find Full Text PDF

Objectives: Elevated intracranial pressure (ICP) is a complication of severe traumatic brain injury (TBI) that carries a risk of secondary brain injury. This study investigated the association between ICP burden and brain injury patterns on MRI in children with severe TBI.

Design, Setting, And Patients: Secondary analysis of the Approaches and Decisions in Acute Pediatric TBI (ADAPT) study, which included children with severe TBI (Glasgow Coma Scale score < 9) who received a clinical MRI within 30 days of injury.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) causes a high level of blood glutamate, which triggers host defense by activating oxidative stress and inflammation response. However, the concrete mechanism underlying its exacerbating effects on acute lung injury (ALI) severity remains unknown. In the present study, we aim to demonstrate the special role of N-methyl-D-aspartate receptor (NMDAR) in regulating glutamate-related inflammation signaling to facilitate the sustaining injury.

View Article and Find Full Text PDF

Mean Airway Pressure-An Informative but Overlooked Indicator of Mechanical Power.

Crit Care Explor

September 2025

Division of Pulmonary, Allergy, Critical Care, and Sleep, University of Minnesota, Minneapolis, MN.

Mean airway pressure, a monitored variable continuously available on the modern ventilator, is the pressure measured at the airway opening averaged over the time needed to complete the entire respiratory cycle. Mean airway pressure is well recognized to connect three key physiologic processes in mechanical ventilation: physical stretch, cardiovascular dynamics, and pulmonary gas exchange. Although other parameters currently employed in adults to determine "safe" ventilation are undoubtedly valuable for daily practice, all have limitations for continuous monitoring of ventilation hazard.

View Article and Find Full Text PDF

Polystyrene particles induces asthma-like Th2-mediated lung injury through IL-33 secretion.

Environ Int

September 2025

Center for Respiratory Safety Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea. Electronic address:

Plastics, particularly polystyrene (PS), are extensively used worldwide, especially in disposable packaging, which contributes to environmental pollution by generating microplastic particles. Herein, we investigated the pulmonary toxic effects of PS microplastics, focusing on airway inflammation and immune response. PS microplastic (50 nm to 1 μm) exposure was more likely to cause a severe pulmonary inflammatory response, particularly with smaller particle sizes.

View Article and Find Full Text PDF