98%
921
2 minutes
20
The efficient recognition and removal of apoptotic cells and extracellular vesicles (EVs) by phagocytes is critical to prevent secondary necrosis and maintain tissue homeostasis. Such detection involves receptors and bridging molecules that recognize aminophospholipids-normally restricted to the inner leaflet of healthy cells-which become exposed on the surface of dead cells and the vesicles they produce. A majority of studies focus on phosphatidylserine (PS), for which there are well-established receptors that either bind to the lipid directly or indirectly via intermediary proteins. Phosphatidylethanolamine (PE) is even more prevalent than PS in the inner leaflet of mammalian cells and also becomes exposed by the action of scramblases during cell death, though little is known about the effects of PE once scrambled. Here, we report that PE can itself serve as a phagocytic ligand for macrophages by engaging CD300 family receptors. CD300a and CD300b specifically modulated the binding and uptake of PE particles, and this process involved immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptors and spleen tyrosine kinase (Syk). For bacteria, which contain PE but largely lack PS in their membranes, we report that PE engagement enabled the binding and uptake of spheroplasts and bacterial extracellular vesicles (BEVs) that were unsheathed by the cell wall. The inflammatory responses of macrophages to PE particles containing lipopolysaccharide (LPS) were also curtailed by CD300a expression. Based on these observations, we posit that the direct recognition of PE facilitates mechanisms of clearance that stand to have a broad impact on the immune response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2025.07.043 | DOI Listing |
Acta Neuropathol Commun
September 2025
Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, Seoul, 05029, Republic of Korea.
Cancer Metastasis Rev
September 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.
Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.
View Article and Find Full Text PDFOncogene
September 2025
Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.
Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.
View Article and Find Full Text PDFEMBO Rep
September 2025
Max Planck Unit for the Science of Pathogens, Berlin, D-10117, Germany.
The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Cen
Macrophages play crucial roles in the progression of liver diseases. Increasing studies have shown that mesenchymal stem cells (MSCs) and their extracellular vesicles (MSC-EVs) could reshape the liver immune microenvironment by regulating the function and phenotype of macrophages, thereby exerting a therapeutic effect on liver diseases. Mitochondria, apart from being the central hub of energy metabolism, also finely regulate macrophage-mediated innate immune responses by modulating reactive oxygen species levels, cell polarization, and cell death.
View Article and Find Full Text PDF