Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder caused by a mutation in the Dmd gene, leading to progressive muscle degradation, increasing weakness, and typically resulting in death before the third decade of life. To investigate the pathobiology of DMD, this study employed the Sprague-Dawley Dmd-mutated rat model (DMD) and analyzed gene expression profiles and pathological molecular pathways. The methods used included histopathological, biochemical, and transcriptomic analyses of dystrophic skeletal muscle from DMD and wild-type (WT) individuals. Histological analysis of skeletal muscle tissue from DMD rats revealed multifocal necrosis, fibrosis, and inflammation, whereas WT rats displayed normal muscle architecture. Biochemical analysis revealed significant alterations in plasma markers of muscle damage and metabolism in DMD rats compared to WT controls, including elevated AST, ALT, ALP, CPK, and LDH levels. Additionally, oxidative status measurements showed reduced antioxidant capacity and increased lipid peroxidation in dystrophic skeletal muscle, as evidenced by lower TAS, GR, GPx, and SOD activities and higher TBARS levels. RNA-seq analysis identified 3,615 differentially expressed genes between the two groups, associated with muscle contraction, extracellular matrix (ECM) organization, and cytoskeleton organization. Notably, Dmd, Actc1, Col6a1, and Mmp2 were significantly downregulated. Gene ontology and pathway enrichment analyses indicated dystrophic changes in skeletal muscle, disruptions in calcium homeostasis, and alterations in actin cytoskeleton regulation. KEGG and Reactome pathway analyses revealed upregulation of the MAPK signaling and immune system pathways and downregulation of the ECM organization pathway. These findings support the hypothesis that targeting complex intracellular signaling pathways in DMD may represent a promising therapeutic strategy. Given that the DMD rat model closely mimics human DMD pathology compared to other animal models, it offers a more realistic platform for studying the molecular mechanisms of the disease and improving the translational potential of therapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12340039PMC
http://dx.doi.org/10.1038/s41598-025-14756-9DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
dmd
12
rat model
12
muscle
9
muscle dmd
8
dmd rat
8
duchenne muscular
8
muscular dystrophy
8
dystrophic skeletal
8
dmd rats
8

Similar Publications

Sudden Death Caused by Bilateral Diaphragmatic Eventration in Myotonic Dystrophy Type 1.

Am J Forensic Med Pathol

September 2025

Department of Pathology, St Louis University School of Medicine, Office of the Medical Examiner - City of St. Louis, St. Louis, MO.

Myotonic dystrophy type 1, or dystrophia myotonica type 1 (DM1), is a multisystem disorder inherited in an autosomal dominant manner. It is caused by a CTG tri-nucleotide expansion in the 3'-untranslated region (3'-UTR) of the dystrophia myotonia protein kinase (DMPK) gene. Core clinical features include progressive skeletal muscle weakness, myotonia, and systemic complications, with premature mortality most often due to respiratory or cardiac dysfunction.

View Article and Find Full Text PDF

Myopathology and Immune Profile of Granulomatous Myositis in Sarcoid Myopathy.

Neuropathol Appl Neurobiol

October 2025

Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.

Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Background: Fine particulate matter has developmental toxicity, and midgestation is an important period for the development of foetal skeletal muscle. The ability of exercise to modulate skeletal muscle damage in mice exposed to PM during gestation remains unclear.

Methods: Pregnant C57BL/6 mice were exposed to 50 μg/m PM for 2 h on five consecutive days starting at embryonic day 12.

View Article and Find Full Text PDF

Purpose: CL316,243 (CL), a beta 3 adrenergic receptor (B3-AR) agonist has 'exercise mimetic' effects in adipose tissue (AT). CL may also positively affect skeletal muscle (SM), yet the role of estrogen receptor beta (ERβ) in mediating SM-specific effects of CL is not known. We investigated the effects of CL on SM metabolism, as well as the role played by ERβ.

View Article and Find Full Text PDF

A myotropic AAV vector combined with skeletal muscle -regulatory elements improve glycogen clearance in mouse models of Pompe disease.

Mol Ther Methods Clin Dev

June 2025

Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.

Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.

View Article and Find Full Text PDF