Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The demand for characterisation of beam-sensitive samples at the nanoscale in environmental conditions is increasing for applications in materials science and biology. Here we communicate a protocol with custom software, enabling precise control over the electron microscope, and a custom sample holder, facilitating automated acquisition of fast 3D data from a single object under environmental conditions. This method enables imaging with a controlled electron dose and multi-modal electron signals. The method can be used in environmental scanning or transmission electron microscopes for easy sample preparation and to benefit from high spatial resolution, respectively. To demonstrate its effectiveness, we investigate the porosity of Al(OH) hydrogels, and the penetration ability and distribution of gold nanoparticles. Unfixed, hydrated magnetotactic bacteria producing intracellular iron oxide nanoparticles were also characterized in 3D in their native state. This methodological and technical development serves as a milestone in the study of various samples at any humidity level, offering easier sample preparation compared to cryo-TEM techniques, while maintaining a similar or even lower dose level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12340152PMC
http://dx.doi.org/10.1038/s44172-025-00482-7DOI Listing

Publication Analysis

Top Keywords

environmental conditions
12
sample preparation
8
electron
5
fast automatic
4
automatic multiscale
4
multiscale electron
4
electron tomography
4
tomography sensitive
4
sensitive materials
4
environmental
4

Similar Publications

Metabolic Flexibility in Insects: Patterns, Mechanisms, and Implications.

Annu Rev Entomol

September 2025

2Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.

The evolutionary success of insects may be partly attributed to their profound ability to adjust metabolism in response to environmental stress or resource variability at a range of timescales. Metabolic flexibility encompasses the ability of an organism to adapt or respond to conditional changes in metabolic demand and tune fuel oxidation to match fuel availability. Here, we evaluate the mechanisms of metabolic flexibility in insects that are considered short-term, medium-term, and long-term responses.

View Article and Find Full Text PDF

Genomic and morphological characterization of a novel iridovirus, bivalve iridovirus 1 (BiIV1), infecting the common cockle ().

Microb Genom

September 2025

International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.

High rates of mortality of the common cockle, , have occurred in the Wash Estuary, UK, since 2008. A previous study linked the mortalities to a novel genotype of , with a strong correlation between cockle moribundity and the presence of . Here, we characterize a novel iridovirus, identified by chance during metagenomic sequencing of a gradient purification of cells, with the presence also correlated to cockle moribundity.

View Article and Find Full Text PDF

Problem: Preeclampsia (PE) is a leading cause of perinatal maternal and fetal mortality. Clinical and pathological studies suggest that placental and decidual cell dysfunction may contribute to this condition. However, the pathogenesis of PE remains poorly understood.

View Article and Find Full Text PDF

Problem: Endometriosis is a chronic inflammatory disease that leads to pelvic pain and infertility. Recent studies have indicated that immunological, endocrine, biochemical, and genetic irregularities, along with suboptimal quality of oocytes, embryos, and the endometrial environment, significantly impact infertility associated with endometriosis. Ectopic endometrial cells in endometriosis have the capacity to avoid apoptosis.

View Article and Find Full Text PDF

Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.

Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.

View Article and Find Full Text PDF