98%
921
2 minutes
20
Significance: Dynamic optical coherence elastography can excite and detect propagating mechanical waves in soft tissue without physical contact and in near real time. However, most soft tissue is anisotropic, characterized by at least three independent elastic moduli. As a result, reconstructing these moduli from mechanical wave fields requires a complex procedure.
Aim: We consider a nearly incompressible transverse isotropic (NITI) material, which has been shown to locally define the symmetry of many soft tissues such as muscle, tendon, skin, cornea, heart, and brain. Reconstruction of elastic moduli in the NITI medium using Rayleigh waves is addressed here. A method to accurately compute the angular dependence of Rayleigh wave phase velocity for the most common geometries (point-like and line sources) of mechanical wave excitation is described.
Approach: When a line source is used to launch plane mechanical waves over the medium surface, the phase velocity of Rayleigh waves in the direction of propagation is directly accessible. For a point-like source, propagation of the energy flux is tracked (i.e., its group velocity), which cannot be directly used for moduli inversion. In this case, angular spectrum decomposition is used to access the phase velocity. Both numerical simulations in OnScale and experiments in a stretched PVA phantom were performed.
Results: We show that both methods (line source wave excitation and angular decomposition from a point-like source) produce similar results and accurately estimate the angular anisotropy of the Rayleigh wave phase velocity. We also explicitly show that a commonly used group velocity approach leads to inadequate moduli inversion and should not be used for reconstruction.
Conclusions: We suggest that the line source is best when a surface area must be scanned, whereas the point-like source with the proposed phase velocity reconstruction is best for single-point moduli estimation or when tissue motion is a concern.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334138 | PMC |
http://dx.doi.org/10.1117/1.JBO.30.12.124503 | DOI Listing |
Kardiologiia
September 2025
Second Affiliated Hospital of Chongqing Medical University, Department of Ultrasound Medicine.
Objective This research investigated the application of real-time, three-dimensional speckle tracking imaging (RT-3D-STI) to evaluate left atrial (LA) function in individuals suffering from hypertensive heart disease (HHD) and heart failure with preserved ejection fraction (HFpEF).Material and methods This retrospective study included 100 patients with HHD and HFpEF hospitalized from August 2023to June 2024 (HFpEF group). 100 healthy individuals undergoing physical examinations comprised the control group.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
To analyse the issues of high muzzle flame intensity and the easy migration of insensitive agents in conventional insensitive propellants, this study synthesizes modified nitrocellulose grafted with carboxymethyl potassium groups by a two-step process, starting from the molecular structure of nitrocellulose (NC), the principal component of propellants. First, the denitration reaction was performed to reduce part of the nitrate ester groups on the surface of NC to hydroxyl groups, followed by an etherification reaction to achieve directional grafting of carboxymethyl potassium groups. Compared with conventional flame retardant/insensitive systems based on nitrogen, phosphorus, or DBP (dibutyl phthalate), potassium-based functional groups exhibit superior thermal stability and environmental friendliness.
View Article and Find Full Text PDFPflugers Arch
September 2025
Department of Science, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
Hypoxia has been extensively studied as a stressor which pushes human bodily systems to responses and adaptations. Nevertheless, a few evidence exist onto constituent trains of motor unit action potential, despite recent advancements which allow to decompose surface electromyographic signals. This study aimed to investigate motor unit properties from noninvasive approaches during maximal isometric exercise in normobaric hypoxia.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2025
In ultrasound imaging, propagation of an acoustic wavefront through heterogeneous media causes phase aberrations that degrade the coherence of the reflected wavefront, leading to reduced image resolution and contrast. Adaptive imaging techniques attempt to correct this phase aberration and restore coherence, leading to improved focusing of the image. We propose an autofocusing paradigm for aberration correction in ultrasound imaging by fitting an acoustic velocity field to pressure measurements, via optimization of the common midpoint phase error (CMPE), using a straight-ray wave propagation model for beamforming in diffusely scattering media.
View Article and Find Full Text PDFJ Strength Cond Res
September 2025
Institute for Data Analysis and Process Design, ZHAW, Zurich, Switzerland; and.
Achermann, BB, Drewek, A, and Lorenzetti, SR. Acute effect of the bounce squat on ground reaction force at the turning point and barbell kinematics. J Strength Cond Res XX(X): 000-000, 2025-The free-weight back squat is a key exercise for developing lower-body strength, with variations that influence muscle activation and performance.
View Article and Find Full Text PDF