98%
921
2 minutes
20
Exposure to bisphenols and perfluoroalkyl substances (PFAS) is linked to various health impairments, including (developmental) neurotoxicity. Evidence indicates that bisphenols and PFAS can impact early neurodevelopmental processes such as proliferation, migration, and differentiation, although little is known about the effects of these compounds on neuronal activity and network development. Therefore, we assessed the effects of acute and chronic exposure to different bisphenols (bisphenol-A (BPA), bisphenol-F (BPF), and bisphenol-S (BPS)) and PFAS (perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS), and perfluorohexanesulfonate (PFHxS)) on neuronal activity and network development in rat primary cortical cultures using micro-electrode array recordings. Acute exposure to BPA and BPF decreased neuronal activity, while BPS had no effect. Chronic exposure to 100 μM BPA decreased network development, while chronic exposure to 10 μM BPA, 100 μM BPF, and 100 μM BPS induced a hyperexcitation. Thus, differences in the molecular structure of bisphenols and exposure duration influence the effects of these compounds on neuronal activity and network development. In contrast, both acute and chronic exposure to PFOS, PFOA, and PFHxS had limited effects on neuronal activity and network development. Since bisphenols and PFAS are known endocrine-disrupting compounds, we also evaluated the possible involvement of estrogen, glucocorticoid, thyroid hormone, and aryl hydrocarbon receptor pathways in the observed neurotoxic effects. Our cortical cultures appeared insensitive to endocrine-mediated effects of (ant)agonists of these pathways, making it unlikely that the observed neurotoxic effects are endocrine-mediated. These findings contribute to hazard assessment for toxicological risk assessments and emphasize the need to consider molecular structure in evaluating neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2025.180214 | DOI Listing |
J Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDFJ Neurophysiol
September 2025
Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA.
Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.
View Article and Find Full Text PDFCell Rep
September 2025
International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address:
Neurons that encode odor information are fundamental to innate fear processes, yet how mitral/tufted (M/T) cells encode innate fear remains unknown. Here, we identify three different response patterns of M/T cells in the dorsal olfactory bulb (dOB) during active avoidance elicited by non-dehydrogenated 2,4,5-trimethylthiazole (nTMT) through in vivo calcium imaging and multielectrode recordings in mice, including enhanced responses, suppressed responses, and no response. Remarkably, suppressed response M/T cells encode active avoidance, whereas suppressed and enhanced response M/T cells jointly encode passive freezing.
View Article and Find Full Text PDFJCI Insight
September 2025
Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States of America.
Dravet syndrome (DS) is an early-onset epilepsy caused by loss of function mutations in the SCN1A gene, which encodes Nav1.1 channels that preferentially regulate activity of inhibitory neurons early in development. DS is associated with a high incidence of sudden unexpected death in epilepsy (SUDEP) by a mechanism that may involve respiratory failure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .
View Article and Find Full Text PDF