98%
921
2 minutes
20
Bile acids are cholesterol-derived molecules primarily recognized for their roles in digestion and lipid metabolism. However, decades of research have consistently highlighted their broader and diverse biological significance, particularly their modulation of host immunity. This review investigates the molecular mechanisms through which bile acids regulate immune responses, including their effects on macrophages, dendritic cells, and T cells. Bile acids engage with nuclear and membrane receptors, notably the farnesoid X receptor and the Takeda G-protein-coupled receptor 5, to influence immune cell differentiation, communication, and signaling. These regulations could shape disease outcomes, such as in inflammatory bowel diseases, intestinal and liver diseases, and liver and colorectal cancers. Additionally, we highlight recent advances in photoaffinity labeling and chemical proteomics that have broadened our understanding of bile acid-induced signaling by identifying novel bile acid-targeting proteins. By elucidating the mechanisms of action and significance of bile acid regulation, we provide insights into how bile acids serve as critical mediators between metabolism and immunity-opening new avenues for therapeutic interventions targeting bile acid signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nyas.70014 | DOI Listing |
Mol Pharm
September 2025
Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Phytosterols are a class of natural steroids found in various plants. Commercially available phytosterols (PS) are primarily extracted from the deodorized distillate of soybean oil and consist predominantly of β-sitosterol with smaller amounts of stigmasterol and campesterol. Numerous studies have consistently demonstrated the significant lipid-lowering activity of PS.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Public Health, Zhengzhou University, Zhengzhou, China; Food Laboratory of Zhongyuan, Luohe, Henan, China. Electronic address:
Cholesterol homeostasis dysregulation is a primary risk factor for atherosclerosis (AS) development. Fisetin, a flavonoid compound, has shown promise in regulating cholesterol homeostasis by enhancing transintestinal cholesterol excretion (TICE). This study aimed to investigate the regulatory effects and underlying mechanisms of fisetin in AS.
View Article and Find Full Text PDFMed Sci (Paris)
September 2025
Service des maladies de l'appareil digestif. Centre de compétence Maladies rares « Maladies inflammatoires des voies biliaires et hépatites autoimmunes », Hôpital Huriez, Lille, France.
Primary biliary cholangitis (PBC) is a rare disease for which management long consisted of a single treatment: ursodeoxycholic acid. In 2015-2016, this disease regained interest with the first studies on obeticholic acid (FXR agonist) and then on bezafibrate (PPAR agonist). Subsequently, over the past five years, significant progress has been made in the management of PBC.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
The onset of puberty is increasingly observed at earlier ages in children, especially in girls with obesity, a trend that predisposes them to long-term metabolic and reproductive disorders in adulthood. Bile acids have emerged as pivotal signaling molecules in both metabolic and reproductive disorders, but remain unexplored in the early onset of puberty in children. Herein, we find elevated levels of muricholic acid (MCA) species in the serum of girls with central precocious puberty, which strongly correlate with indices of hypothalamic-pituitary-gonadal axis activation and can reach peak levels during puberty among healthy children.
View Article and Find Full Text PDFJ Anim Sci
September 2025
Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.
View Article and Find Full Text PDF