Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Bone defects are a common pathology in bone tissue diseases, and existing therapeutic interventions have significant limitations, highlighting the need for innovative strategies and advanced biomaterials. DNA, traditionally recognized as a prominent genetic material, also possesses exceptional properties as a biological material, making it an ideal nanoscale building block for creating various DNA-based biomaterials, such as DNA framework materials and DNA hydrogels. DNA-based biomaterials offer notable advantages, including structural versatility, biocompatibility, and, crucially, programmability, which position them as promising candidates for bone tissue engineering. This review explores recent advancements in the use of DNA-based biomaterials for bionic mineralization and drug delivery systems, as well as their future potential in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12327870 | PMC |
http://dx.doi.org/10.1016/j.fmre.2024.12.015 | DOI Listing |