Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Radiation-induced carcinogenesis remains one of the main hurdles for long duration missions in deep space. The space radiation environment is diverse and includes high linear energy transfer (LET) ions that are particularly effective at inducing adverse health outcomes including cancer. Quantifying the health effects of these high-LET ions is difficult, and large uncertainties remain in cancer risk projections. Chromosome aberrations are a biomarker of radiation-induced cancer used to assess radiation quality effects. Fluorescence in situ hybridization (FISH) measurements of simple and complex exchanges have inherent detection limitations that might underestimate the overall number of chromosomal rearrangements, possibly affecting estimates of the relative biological effectiveness of high-LET ions.

Material And Methods: In this work, we introduced a new chromosome aberration classification approach in the simulation code RITCARD (Radiation induced tracks, chromosome aberrations, repair, and damage), that accounts for FISH detection threshold and the use of different chromosome painting probes. We also modified our 3D nuclear architecture model using Hi-C data to generate the DNA distribution within cell nuclei with the tool G-NOME. This new approach allowed the discrimination of true simple and complex exchanges from apparently simple exchanges (complex exchanges detected as simple), as well as undetected exchanges.

Results: We compared the results of this new classification method in the RITCARD tool with experimental FISH data obtained for the staining of 3 pairs of chromosomes (referred to as 3-FISH), and found an overall good agreement of the total exchanges for fibroblasts (hTERT 82-6) and lymphocytes (whole blood) for high LET ions, a slight underestimation in the low LET range (< ∼ 20 keV/µm), and a slight imbalance between simple and complex exchanges for lymphocytes. The model reproduced well the higher yield of aberrations for lymphocytes, compared to fibroblasts. Remarkably, in our model, this higher yield was solely due to differences in nuclear geometries and repair time between the two cell types, both derived from experimental data. For both cell types, we observed an increased number of complex exchanges detected as simple, and an increased number of undetected simple exchanges for high LET ions when we increased the detection threshold. For lymphocytes, this resulted in an overall increased number of simple exchanges, while, for fibroblasts, simple exchanges remained largely unchanged. Overall, the number of total exchanges decreased with increased detection threshold for both cell types. We also found that, for high LET ions, the majority of detected simple exchanges were true complex exchanges, due to many intra-chromosomal rearrangements that are undetected with traditional FISH technique.

Perspectives: Our new chromosome aberration classification approach allows us to go beyond FISH detection limitations and quantify how they impact aberration yields. Our simulation results suggest that, for high LET exposure, 3-FISH underestimates the total number of exchanges as well as their complexity, due to the inability to detect small fragments and intra-chromosomal rearrangements. Future work will focus on optimizing the model parameters to better reproduce low LET measurements. Once validated, RITCARD predictions may be used in the NASA cancer model to inform radiation quality factors as part of an ensemble framework. We also intend to investigate how predictions obtained with partial chromosome staining (3-FISH) compares with predictions obtained with whole genome staining (mFISH), and how both compare with predictions of true exchanges, where all exchanges are accounted for, included those undetectable by traditional FISH such as inversion or small deletions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lssr.2025.04.009DOI Listing

Publication Analysis

Top Keywords

complex exchanges
24
simple exchanges
20
detection threshold
16
exchanges
16
chromosome aberration
12
simple complex
12
detected simple
12
high ions
12
cell types
12
increased number
12

Similar Publications

Magnon-phonon hybridization in ordered materials is a crucial phenomenon with significant implications for spintronics, magnonics, and quantum materials research. We present direct experimental evidence and theoretical insights into magnon-phonon coupling in Mn_{3}Ge, a kagome antiferromagnet with noncollinear spin order. Using inelastic x-ray scattering and ab initio modeling, we uncover strong hybridization between planar spin fluctuations and transverse optical phonons, resulting in a large hybridization gap of ∼2  meV.

View Article and Find Full Text PDF

Chronic diarrhea is a frequent gastrointestinal complication in both type 1 (T1D) and type 2 diabetes (T2D), although the underlying mechanisms differ: T1D is linked to autonomic neuropathy and disrupted transporter regulation, while T2D is often linked to medications and intestinal inflammation. Using streptozotocin-induced mouse models of T1D and T2D, we observed increased luminal fluid in the small intestine of both. Given the role of Na⁺/H⁺ exchanger 3 (NHE3) in fluid absorption and its loss in most diarrheal diseases, we examined NHE3 expression across intestinal segments.

View Article and Find Full Text PDF

A Late Bronze Age foreign elite? Investigating mobility patterns at Seddin, Germany.

PLoS One

September 2025

Department of Research, Collections and Conservation, Environmental Archaeology and Materials Science, National Museum of Denmark, Kongens Lyngby, Denmark.

During the Late Bronze Age (ca. 11th-8th century BCE), far-reaching and extensive trade and exchange networks linked communities across Europe. The area around Seddin in north-western Brandenburg, Germany, has long been considered as at the core of one such networks.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF

We have established a new route for boron-rich ruthenaborane clusters utilizing [BH·THF] and a ruthenium precursor featuring chelating ligands. Salt elimination reactions between [K(CHNE)], (E = S; Se) and [RuCl(PPh)], afforded -[Ru(κ--CHNE)(PPh)], -- (-: E = S and -: E = Se). Following the ligand exchange reaction with the 1,2-bis (diphenylphosphino)ethane (dppe) ligand yielded -[Ru(κ--CHNE)(dppe)] (-: E = S; -: E = Se).

View Article and Find Full Text PDF