A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Composite transposons with bivalent histone marks function as RNA-dependent enhancers in cell fate regulation. | LitMetric

Composite transposons with bivalent histone marks function as RNA-dependent enhancers in cell fate regulation.

Cell

State Key Laboratory of Green Biomanufacturing, Tsinghua-Peking Joint Center for Life Sciences, Center for Synthetic and Systems Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China. Electronic address:

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Discrete genomic units can recombine into composite transposons that transcribe and transpose as single units, but their regulation and function are not fully understood. We report that composite transposons harbor bivalent histone marks, with activating and repressive marks in distinct regions. Genome-wide CRISPR-Cas9 screening, using a reporter driven by the hominid-specific composite transposon SVA (SINE [short interspersed nuclear element]-VNTR [variable number of tandem repeats]-Alu) in human cells, identified diverse genes that modify bivalent histone marks to regulate SVA transcription. SVA transcripts are critical for SVA's cis-regulatory function in selectively contacting and activating long-range gene expression. Remarkably, a subset of bivalent SVAs is activated during erythropoiesis to boost multiple erythroid gene expression, and knocking down these SVAs leads to deficient erythropoiesis. The RNA-dependent cis-regulatory function of SVA activates genes for myelopoiesis and can contribute to aging-associated myeloid-biased hematopoiesis. These results reveal that the cis-regulatory functions of composite transposons are bivalently regulated to control cell fate transitions in development and aging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2025.07.014DOI Listing

Publication Analysis

Top Keywords

composite transposons
16
bivalent histone
12
histone marks
12
cell fate
8
cis-regulatory function
8
gene expression
8
composite
5
bivalent
4
transposons bivalent
4
marks
4

Similar Publications