Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

At two-thirds the weight of aluminum, magnesium alloys have the potential to reduce the fuel consumption of transportation vehicles. These advancements depend on our ability to optimize the desirable versus undesirable effects of deformation twins, which are three-dimensional (3D) microstructural domains that form under mechanical stresses. Previously only characterized through surface or thin-film measurements, we present 3D in situ characterization of deformation twinning inside an embedded grain over mesoscopic fields of view using dark-field x-ray microscopy supported by crystal plasticity finite element analysis. The results revealed the role of triple junctions on twin nucleation and the sequence and irregularity of twin growth and showed that twin-grain junctions, twin-twin junctions, and twin boundaries were the sites of localized dislocation accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adv3460DOI Listing

Publication Analysis

Top Keywords

deformation twins
8
junctions twin
8
three-dimensional nucleation
4
nucleation growth
4
growth deformation
4
twins magnesium
4
magnesium two-thirds
4
two-thirds weight
4
weight aluminum
4
aluminum magnesium
4

Similar Publications

Introduction: Craniopagus is one of the rarest congenital abnormalities. Separation of craniopagus twin is associated with high morbidity and mortality, especially in total type, where the twin had shared dural venous sinuses. One of the complications after separation surgery is hydrocephalus.

View Article and Find Full Text PDF

Allele-Specific Regulation of PAXIP1-AS1 by SMC3/CEBPB at rs112651172 in Psychiatric Disorders Drives Synaptic and Behavioral Dysfunctions in Mice.

Adv Sci (Weinh)

September 2025

Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Diso

Schizophrenia (SCZ) and bipolar disorder (BPD) are highly heritable psychiatric disorders with complex genetic and environmental underpinnings. Allele-specific expression (ASE) has emerged as a critical mechanism linking noncoding genetic variants to disease risk through epigenetic and environmental modulation. Here, whole-genome and transcriptome analyses of monozygotic twin pairs discordant for BPD or SCZ are performed, identifying that noncoding genetic variants drive differential ASE patterns of long noncoding RNAs (lncRNAs) in affected individuals compared to their unaffected co-twins.

View Article and Find Full Text PDF

Background: Preterm birth is the leading cause of neonatal mortality and long-term health complications. Cervical cerclage (CC) represents a critical intervention for extending pregnancy duration and enhancing neonatal survival in patients diagnosed with cervical insufficiency. The aim of this study was to identify risk factors for preterm birth through a meta-analysis comparing outcomes between preterm and full-term deliveries following non-emergency CC.

View Article and Find Full Text PDF

Computational modeling of drug-eluting balloons in peripheral artery disease: Mechanisms, optimization, and translational insights.

Comput Struct Biotechnol J

August 2025

Unit of Medical Technology and Intelligent Information Systems, Dept. of Materials Science and Engineering, University of Ioannina, Ioannina GR45110, Greece.

Drug-eluting balloons (DEBs) represent a promising alternative to stent-based interventions for peripheral artery disease (PAD), and their therapeutic efficacy is dependent on optimizing drug transfer, mechanical deployment, and vessel-wall interactions. This review synthesizes current advancements in computational modeling; systematically analyzes studies identified through comprehensive ScienceDirect, Scopus, and PubMed (2015-2025) searches; and selects them according to PRISMA guidelines. Key strategies, including computational fluid dynamics (CFD), finite element analysis (FEA), fluid-structure interaction (FSI), and machine learning (ML), are critically examined to elucidate how drug kinetics, coating stability, and mechanical stress govern therapeutic outcomes.

View Article and Find Full Text PDF

Discrete Actuation of Water-Responsive Crystalline Metal-Peptide Frameworks.

Angew Chem Int Ed Engl

September 2025

The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.

Engineering guest-responsive materials capable of controlled and precise sorption behavior and structural deformation in response to external stimuli is imperative for various applications. However, existing systems often exhibit complex, unpredictable dynamics, posing challenges for efficient control and utilization. Here, we design crystalline metal-peptide frameworks with tunable water-responsive (WR) dynamics by assembling glycine-threonine (Gly-Thr, GT) or glycine-serine (Gly-Ser, GS) peptides with zinc (Zn) ions, achieving either continuous or discrete threshold water-sorption-dependent phase transitions.

View Article and Find Full Text PDF