98%
921
2 minutes
20
Unlabelled: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has necessitated a continuous updating of vaccines. In contrast, antivirals remained effective as they target conserved viral proteins that are essential for the viral life cycle. However, several mutations in SARS-CoV-2 that may affect the efficacy of United States (US) Food and Drug Administration (FDA)-approved antivirals have been recently identified. Detecting drug-resistant SARS-CoV-2 mutants and investigating their escape mechanism(s) are critical to guide the selection of effective antiviral therapies. In this study, we constructed an attenuated recombinant (r)SARS-CoV-2 lacking the open reading frame (ORF) proteins 3a and 7b but expressing nanoluciferase (Nluc), rSARS-CoV-2 Δ3a7b-Nluc, to facilitate tracking viral infection. Using this virus, we selected drug-resistant mutants to the main viral protease (Mpro) inhibitor nirmatrelvir. After passaging Δ3a7b-Nluc 10 times in the presence of increasing concentrations of nirmatrelvir, a virus population with enhanced resistance was selected. We identified two non-synonymous mutations (L50F and R188G) in Mpro encoded by the non-structural protein 5 (NSP5) gene. Using reverse genetics, we generated rSARS-CoV-2 Δ3a7b-Nluc containing the identified L50F and R188G mutations, individually or in combination, and assessed their contribution to nirmatrelvir resistance. Our results indicate that both mutations are involved in escaping from nirmatrelvir. Altogether, our results demonstrate the feasibility of using the rSARS-CoV-2 Δ3a7b-Nluc variant to identify and validate mutations that confer resistance to FDA-approved antiviral drugs without the concern of conducting gain of function (GoF) experiments with wild-type (WT) forms of SARS-CoV-2.
Importance: Small-molecule antiviral drugs have been used for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. However, drug-resistant SARS-CoV-2 mutants to currently United States Food and Drug Administration-approved Mpro targeting antivirals have been identified. Information on SARS-CoV-2 escape mutants and mutations affecting the antiviral activity of licensed antivirals remains limited. In this study, we developed a nanoluciferase (Nluc)-expressing attenuated recombinant (r)SARS-CoV-2 lacking the ORF 3a and 7b proteins (Δ3a7b-Nluc) to identify nirmatrelvir-resistant mutants without the biosafety concerns associated with gain-of-function (GoF) research using wild-type (WT) SARS-CoV-2. Using Δ3a7b-Nluc, we have selected variants with reduced sensitivity to nirmatrelvir that were validated by the generation of rSARS-CoV-2 Δ3a7b-Nluc containing the candidate L50F and R188G mutations in Mpro. These results demonstrate the feasibility of using rSARS-CoV-2 Δ3a7b-Nluc to safely identify and validate drug-resistant mutants overcoming concerns originating from adaptation studies using WT SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1128/jvi.00821-25 | DOI Listing |
J Virol
August 2025
Texas Biomedical Research Institute, San Antonio, Texas, USA.
Unlabelled: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has necessitated a continuous updating of vaccines. In contrast, antivirals remained effective as they target conserved viral proteins that are essential for the viral life cycle. However, several mutations in SARS-CoV-2 that may affect the efficacy of United States (US) Food and Drug Administration (FDA)-approved antivirals have been recently identified.
View Article and Find Full Text PDFUnlabelled: The emergence of SARS-CoV-2 variants has necessitated continuous updating of vaccines. In contrast, antivirals remained effective as they target conserved viral proteins that are essential for the viral life cycle. However, several mutations in SARS-CoV-2 that may affect the efficacy of United States (US) Food and Drug Administration (FDA)-approved antivirals have been recently identified.
View Article and Find Full Text PDFJ Gen Virol
February 2025
School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol BS8 1TD, UK.
The SARS-CoV-2 genome encodes at least nine accessory proteins, including innate immune antagonist and putative viroporin ORF3a. ORF3a plays a role in many stages of the viral replication cycle, including immune modulation. We constructed two recombinant (r)SARS-CoV-2 viruses in which the ORF3a gene was replaced with mScarlet (mS) or mNeonGreen (mNG), denoted as rSARS-CoV-2-Δ3a-mS and rSARS-CoV-2-Δ3a-mNG, respectively.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
Coronavirus (CoV) Nsp15 is a viral endoribonuclease (EndoU) with a preference for uridine residues. CoV Nsp15 is an innate immune antagonist which prevents dsRNA sensor recognition and stress granule formation by targeting viral and host RNAs. SARS-CoV-2 restricts and delays the host antiviral innate immune responses through multiple viral proteins, but the role of SARS-CoV-2 Nsp15 in innate immune evasion is not completely understood.
View Article and Find Full Text PDFVaccine
February 2024
Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa; Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria (UP), South Africa.
In the quest for heightened protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, we engineered a prototype vaccine utilizing the plant expression system of Nicotiana benthamiana, to produce a recombinant SARS-CoV-2 virus-like particle (VLP) vaccine presenting the S-protein from the Beta (B.1.351) variant of concern (VOC).
View Article and Find Full Text PDF