98%
921
2 minutes
20
Understanding precursor diffusion and substrate interaction is key to advancing chemical vapor deposition (CVD) of transition metal dichalcogenides (TMCs), yet direct observation has remained a challenge due to limited real-time observation. Here, MoS growth is directly monitored to investigate the kinetics and influence of the precursor/sodium droplet eutectic (SODE). Serving as a catalyst, SODE migrates from the basal plane to the edges and substrate interface, promoting growth and enabling grain translation and rotation. Kinetic analysis shows MoS grows more readily on its own surface than on SiO, indicating a thermodynamic-kinetic interplay supported by density functional theory calculations. Notably, larger SODE droplets enhance such grain dynamics, while submicron-scale SODE exhibits extended diffusion, enabling uniform, large-area growth. These findings highlight the critical role of molten metal diffusion in growth continuity and provide new insights for optimizing scalable, cost-effective TMC fabrication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202500813 | DOI Listing |
ACS Nano
September 2025
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Integration of ultrathin, high-quality gate insulators is critical to the success of two-dimensional (2D) semiconductor transistors in next-generation nanoelectronics. Here, we investigate the impact of atomic layer deposition (ALD) precursor choice on the nucleation and growth of insulators on monolayer MoS. Surveying a series of aluminum (AlO) precursors, we observe that increasing the length of the ligands reduces the nucleation delay of alumina on monolayer MoS, a phenomenon that we attribute to improved van der Waals dispersion interactions with the 2D material.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, C
This study develops a catalytic system using pyruvic acid (PYA) and Fe to efficiently coproduce xylo-oligosaccharides (XOS) and (manno-oligosaccharides) MOS from food material ( Lam. fruit.) and its waste peel, respectively.
View Article and Find Full Text PDFNanoscale
September 2025
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
With the progress of study, MoS has been proven to show excellent properties in electronics and optoelectronics, which promotes the fabrication of future novel integrated circuits and photodetectors. However, highly uniform wafer-scale growth is still in its early stage, especially regarding how to control the precursor and its distribution. Herein, we propose a new method, spraying the Mo precursor, which is proven to fabricate highly uniform 2-inch monolayer MoS wafers.
View Article and Find Full Text PDFOncol Res
September 2025
Department of Oncology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
Background: The use of third-generation different tyrosine kinase inhibitors (TKIs) is considered the most effective option for treating advanced non-small cell lung cancer (aNSCLC) with epidermal growth factor receptor (EGFR) mutations. However, there is limited information on the efficacy and safety of aumolertinib in patients remains these cases.
Methods: The clinical records of patients receiving aumolertinib as first-line therapy across four hospitals in the Guangxi Zhuang Autonomous Region from April 2020 to December 2021 were retrospectively analyzed, using progression-free survival (PFS) as the primary endpoint and overall survival (OS) representing the secondary endpoint.
Adv Sci (Weinh)
September 2025
Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
Molybdenum disulfide (MoS) has recently emerged as a promising material for the development of triboelectric nanogenerators (TENGs) owing to its inherently negative triboelectric properties when paired with polymeric layers, along with its notable transparency and mechanical flexibility. However, MoS-based TENGs operating in the contact-separation mode encounter critical limitations, including mechanical wear and limited triboelectric performance, particularly within the constraints of conventional 2D geometries. This paper reports the novel one-step laser-assisted synthesis of hemispherical MoS through the controlled nucleation and growth of MoS precursor seeds.
View Article and Find Full Text PDF