A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development and Validation of Survival Prediction Models for Patients With Pineoblastomas Using Deep Learning: A SEER-Based Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Pineoblastomas (PBs) are rare central nervous system tumors primarily affecting children and adolescents, with limited data on clinical characteristics and survival outcomes. Prognosis prediction models for this disease are lacking. The purpose of this study was to develop deep learning (DL) models for predicting 3-year survival in patients with pineoblastoma.

Methods: Patients with pineoblastomas of all ages were identified from the Surveillance, Epidemiology, and End Results (SEER) database (1975-2019). Deep neural networks (DNN) were trained and tested at a ratio of 7:3 in a 5-fold cross-validated fashion. Multivariate CPH models were constructed for comparison. The primary outcomes were 3-year overall survival (OS) and disease-specific survival (DSS). All the variables were included in the analysis. Receiver operating characteristic (ROC) curve analysis and calibration plots were used to evaluate the model performance.

Results: A total of 145 patients were included in this study. The area under the curve (AUC) for the DNN models was 0.92, 0.91, and 0.749 for OS and 0.76 for DSS. The DNN models exhibited good calibration: the OS model (slope = 0.94, intercept = 0.07) and DSS model (slope = 0.81, intercept = 0.20).

Conclusion: Our DNN models showed a more accurate prediction of survival outcomes in patients with pineoblastoma than the widely used CPH models. These results indicate the potential of DL algorithms to improve outcome prediction in patients with rare tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329240PMC
http://dx.doi.org/10.1002/cnr2.70303DOI Listing

Publication Analysis

Top Keywords

dnn models
12
models
8
prediction models
8
patients pineoblastomas
8
deep learning
8
survival outcomes
8
3-year survival
8
cph models
8
survival
6
patients
6

Similar Publications