Ultrafast Modulation of Stacking Orders in vdW Layers by Photoinduced Pseudosliding of Ferroelectric Monolayer.

Nano Lett

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Precise control of stacking orders in van der Waals (vdW) heterostructures not only generates novel quantum phenomena but also promises applications in memory and computing devices. However, achieving robust control of the stacking order in vdW heterostructures remains a significant challenge. In this work, TDDFT-MD simulations reveal a photoinduced ultrafast and nonvolatile in-plane structural transition in ferroelectric antimonene. This transition can modify the stacking order in vdW heterostructures based on antimonene. It resembles a sliding effect but retains the geometric center of the antimonene layer and is therefore termed pseudosliding. Furthermore, optical-property switching via pseudosliding is also demonstrated in an Sb/SnSe vdW heterostructure. The present work proposes a new strategy for ultrafast and robust control of stacking orders in vdW heterostructures, leveraging ferroelectric monolayers with an in-plane Peierls distortion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5c02237DOI Listing

Publication Analysis

Top Keywords

vdw heterostructures
16
stacking orders
12
control stacking
12
orders vdw
8
robust control
8
stacking order
8
order vdw
8
vdw
6
stacking
5
ultrafast modulation
4

Similar Publications

Enhanced Curie temperature of ferromagnetic CrSBr by interfacial coupling with elemental two-dimensional ferroelectrics: triggering a new p-d super-exchange coupling path.

Phys Chem Chem Phys

September 2025

Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Owing to their distinctive thickness and physical attributes, two-dimensional (2D) materials have exhibited considerable promise in the field of microelectronic devices. Notably, 2D magnetic materials that maintain long-range magnetic order and can be readily modulated by external fields have garnered substantial attention. However, CrSBr, despite being a 2D van der Waals (vdW) semiconducting magnet with an appropriate band gap and stability in air, faces significant hindrance for practical utilization due to its Curie temperature () of 146 K.

View Article and Find Full Text PDF

Hybrid Superconducting-Magnetic Van der Waals Heterostructures: Physics and Application.

Adv Mater

September 2025

State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China.

Superconductivity and magnetism are two of the most extensively studied ordered systems in condensed matter physics. Recent advancements in the fabrication of van der Waals (vdW) layered materials have significantly advanced the exploration of both fundamental physics and practical applications within their heterostructures. The focus not only lies on the coexisting mechanism between superconductivity and magnetism, but also highlights the potential of these atomically thin layers to serve as crucial components in future superconducting circuits.

View Article and Find Full Text PDF

To assess the efficacy of a mixed-dimensional van der Waals (vdW) heterostructure in modulating the optoelectronic responses of nanodevices, the charge transport properties of the transition-metal dichalcogenide (TMD)-based heterostructure comprising zero-dimensional (0D) WS quantum dots (QDs) and two-dimensional (2D) MoS flakes are critically analyzed. Herein, a facile strategy was materialized in developing an atomically thin phototransistor assembled from mechanically exfoliated MoS and WS QDs synthesized using a one-pot hydrothermal route. The amalgamated photodetectors exhibited a high responsivity of ∼8000 A/W at an incident power of 0.

View Article and Find Full Text PDF

Using Density Functional Theory (DFT) calculations, we explored the electronic band structure and contact type (Schottky and Ohmic) at the interface of VS-BGaX (X = S, Se) metal-semiconductor (MS) van der Waals heterostructures (vdWHs). The thermal and dynamical stabilities of the investigated systems were systematically validated using energy-strain analysis, molecular dynamics (AIMD) simulations, as well as binding energy and phonon spectrum calculations. After analyzing the band structure, VS-BGaX (X = S, Se) MS vdWHs metallic behavior with type-III band alignment is revealed.

View Article and Find Full Text PDF

This study presents the experimental demonstration of metallic NbS-based one-dimensional van der Waals heterostructures using a modified NaCl-assisted chemical vapor deposition strategy. By employing a ″remote salt″ strategy, we realized precise control of the NaCl supply, enabling the growth of high-quality coaxial NbS nanotubes on single-walled carbon nanotube-boron nitride nanotube (SWCNT-BNNT) templates. Using this remote salt strategy, the morphologies of as-synthesized NbS could be tuned from 1D nanotubes to suspended 2D flakes.

View Article and Find Full Text PDF