98%
921
2 minutes
20
Various plants, including fruits, vegetables, and spices, contain kaempferol, a bioflavonoid compound with diverse medicinal effects, such as antioxidant, antibacterial, and anti-inflammatory characteristics. Furthermore, this compound exhibits multiple health-promoting properties, including osteoprotection and osteogenesis, primarily by modulating various cell-signaling pathways. This review aims to illustrate the medical advantages of kaempferol and its role in regulating bone metabolism through cell signaling mechanisms. Numerous studies have demonstrated the bone-protective properties of kaempferol and its encapsulated form. Further research is needed to clarify the optimal dosages, toxicity, safety, and other potential mechanisms of action. This review demonstrates that several signaling pathways, including nuclear factor-kappa B (NF-κB), estrogen receptor, mitogen-activated protein kinase (MAPK), bone morphogenetic protein-2 (BMP-2), and mammalian target of rapamycin (mTOR) signaling pathways, regulate the osteogenesis and anti-osteoporotic effects of kaempferol as an osteoprotective compound. However, the main limitations to applying kaempferol in bone-related disorders are its low stability and absorption. One of the promising approaches to increasing its effectiveness is using delivery-related strategies such as encapsulation, scaffolding, hydrogels, and liposomes to constantly release kaempferol and subsequently enhance its bioavailability and absorption. Thus, this review has attempted to exhibit the understanding of the benefits of kaempferol as a new compound in regulating bone-related signaling pathways and various available delivery approaches to improve its therapeutic potential for treating bone-related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330109 | PMC |
http://dx.doi.org/10.1186/s13036-025-00545-5 | DOI Listing |
Plant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFPlant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDFChem Biodivers
September 2025
School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.
20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.
View Article and Find Full Text PDFBiochem J
September 2025
Cancer Research UK Scotland Institute, Glasgow, G61 1BD, U.K.
RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.
View Article and Find Full Text PDFJ Med Chem
September 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
The prevalence of AGA is continuously rising, with an earlier age of onset. Currently, only minoxidil and finasteride have received FDA approval for the treatment of AGA, inadequately addressing the pressing clinical needs. Recently, the involvement of the Wnt/β-catenin signaling pathway in AGA has attracted increased research interest.
View Article and Find Full Text PDF