A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Crosstalk between inovirus core gene and accessory toxin-antitoxin system mediates polylysogeny. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polylysogeny, the harboring of multiple prophages within a single bacterial genome, is common among bacterial pathogens and enhances virulence and genome plasticity. Inoviruses (filamentous phages) are often present in multiple copies in major pathogens, leading to polylysogeny. Two highly similar filamentous phages (Pf4 and Pf6) are integrated into the widely distributed model Pseudomonas aeruginosa strain, and both prophages are activated during biofilm formation. It remains unclear whether the two prophages function competitively or cooperatively. Here, we show a crosstalk between Pf4's core region protein RepG4 (PA0717) and Pf6's accessory KKP (kinase-kinase-phosphatase) toxin-antitoxin module that coordinates their propagation. RepG4, involved in Pf4 phage replication, triggers kinase-mediated toxicity of KKP in a dose-dependent manner by degrading the phosphatase antitoxin. This crosstalk serves as a molecular brake, preventing excessive Pf4 production and coordinating the release of both Pf4 and Pf6 phages during biofilm maturation. Our findings provide valuable insights into the significance of the tight regulation between phage core genes and accessory genes in establishing a mutualistic interaction between co-resident prophages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328805PMC
http://dx.doi.org/10.1038/s41467-025-62378-6DOI Listing

Publication Analysis

Top Keywords

filamentous phages
8
pf4 pf6
8
crosstalk inovirus
4
inovirus core
4
core gene
4
gene accessory
4
accessory toxin-antitoxin
4
toxin-antitoxin system
4
system mediates
4
mediates polylysogeny
4

Similar Publications