98%
921
2 minutes
20
The integration of artificial intelligence (AI) and pervasive computing offers new opportunities to sense mental health symptoms and deliver just-in-time adaptive interventions via mobile devices. This pilot study tested personalized versus generalized machine learning models for detecting individual and family mental health symptoms as a foundational step toward JITAI development, using data collected through the Colliga app on smart devices. Over a 60-day period, data from 35 families resulted in approximately 14 million data points across 52 data streams. Findings showed that personalized models consistently outperformed generalized models. Model performance varied significantly based on individual factors and symptom profiles, underscoring the need for tailored approaches. These preliminary findings suggest that successful implementation of passive sensing technologies for mental health will require accounting for users' unique characteristics. Further research with larger samples is needed to refine the models, address data heterogeneity, and develop scalable systems for personalized mental health interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12329041 | PMC |
http://dx.doi.org/10.1038/s44184-025-00147-5 | DOI Listing |
Hum Brain Mapp
September 2025
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.
Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.
View Article and Find Full Text PDFInt J Dermatol
September 2025
Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA.
Stroke
September 2025
Brain Language Laboratory, Freie Universität Berlin, Germany (A.-T.P.J., M.R.O., A.S., F.P.).
Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.
View Article and Find Full Text PDFStroke
September 2025
Department of Medicine, University of Melbourne, Parkville, Victoria, Australia. (V.Y., B.C.V.C., L.C., L.O., M.W.P.).
Background: To assess the efficacy and safety of tenecteplase in patients presenting within 24 hours of symptom onset with a large vessel occlusion and target mismatch on perfusion computed tomography.
Methods: ETERNAL-LVO was a prospective, randomized, open-label, blinded end point, phase 3, superiority trial where adult participants with a large vessel occlusion, presenting within 24 hours of onset with salvageable tissue on computed tomography perfusion, were randomized to tenecteplase 0.25 mg/kg or standard care across 11 primary and comprehensive stroke centers in Australia.