Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, faces challenges such as drug resistance and tumor heterogeneity. N4-acetylcytidine (ac4C) is an important RNA modification involved in cancer progression, but its role in lung adenocarcinoma remains unclear.
Methods: This study analyzed transcriptomic and single-cell RNA sequencing data from public databases to investigate the expression and clinical significance of ac4C-related genes in lung adenocarcinoma. Ten machine learning algorithms were applied to develop and validate an ac4C-related gene signature (ARGSig) for prognosis prediction across multiple independent cohorts.
Results: Cells with high ac4C activity showed increased intercellular communication and activation of tumor-associated pathways. The ARGSig model effectively stratified patients by survival outcomes and predicted sensitivity to immune checkpoint inhibitors and chemotherapy agents.
Conclusion: ac4C modification and its related genes play a critical role in lung adenocarcinoma development. The ARGSig model provides a promising molecular tool for prognosis evaluation and personalized treatment guidance in lung adenocarcinoma patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326626 | PMC |
http://dx.doi.org/10.1111/1759-7714.70140 | DOI Listing |