Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Virus-like particles (VLPs) are recombinant, noninfectious, self-assembled structures that are made up of the viral structural proteins that mimic the morphology of viruses but lack genomic material. VLPs have been used to develop vaccines against viruses and cancer, leading to a surge of industry interest in exploring VLP vaccines. There are strict quality controls as a part of downstream processing in the production of nonreplicating VLPs. We characterized SARS-CoV-2 VLPs of the Beta and Omicron BA.5 subvariants, which differ in 43 amino acids in the spike protein. By comparing the Raman spectra of these particles with those of SARS-CoV-2 virions and purified RNA isolated from yeast, we confirmed the absence of genomic material in the VLPs, a crucial requirement for validating manufactured VLP vaccines. Principal component analysis (PCA) was applied to UV-visible spectra between 240 and 300 nm wavelength and Raman spectra in the range of 3200-800 cm. The PCA score plots showed a clear separation between Beta and Omicron BA.5 VLPs. This study shows that spectroscopic techniques, combined with chemometric tools, can be used for rapid, label-free analysis with minimal sample preparation for the characterization of the VLPs. Thus, Raman spectroscopy can serve as a valuable tool for ensuring the structural integrity and quality control of VLPs for vaccine production.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5c01859DOI Listing

Publication Analysis

Top Keywords

virus-like particles
8
vlps
8
genomic material
8
material vlps
8
vlp vaccines
8
beta omicron
8
omicron ba5
8
raman spectra
8
spectroscopic characterization
4
characterization differentiation
4

Similar Publications

Background: Enteroviruses, including Coxsackie B (CVB) viruses, can cause severe diseases such as myocarditis, pancreatitis, and meningitis. Vaccines can prevent these complications, but conserved non-neutralizing epitopes in the viral capsid may limit their effectiveness. The immunodominant PALXAXETG motif, located in the VP1 N-terminus, is a highly conserved region in enteroviruses that elicits non-neutralizing antibody responses.

View Article and Find Full Text PDF

Raman-based PAT for multi-attribute monitoring during VLP recovery by dual-stage CFF: attribute-specific spectral preprocessing for model transfer.

Front Bioeng Biotechnol

August 2025

Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Spectroscopic soft sensors are developed by combining spectral data with chemometric modeling, and offer as Process Analytical Technology (PAT) tools powerful insights into biopharmaceutical processing. In this study, soft sensors based on Raman spectroscopy and linear or partial least squares (PLS) regression were developed and successfully transferred to a filtration-based recovery step of precipitated virus-like particles (VLPs). For near real-time monitoring of product accumulation and precipitant depletion, the dual-stage cross-flow filtration (CFF) set-up was equipped with an on-line loop in the second membrane stage.

View Article and Find Full Text PDF

H5N1 influenza virus-like particles based on BEVS induce robust functional antibodies and immune responses.

Virology

August 2025

Changchun Institute of Biological Products Co.,Ltd, Changchun, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, China. Electronic address:

Avian influenza virus infections pose a potential pandemic threat. The currently licensed vaccines have inherent limitations, emphasizing the urgent need for improved influenza vaccines. Here, we developed a novel hemagglutinin (HA) virus-like particle (VLP) vaccine candidate through the baculovirus expression vector system (BEVS).

View Article and Find Full Text PDF

Interferon-γ receptor signaling is critical for balanced immune activation and protection against influenza after vaccination.

Virology

September 2025

Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA. Electronic address:

To better understand the contribution of interferon-γ (IFN-γ) receptor signaling to vaccine-induced immunity, we employed A129 (IFN-α/β receptor-deficient) and AG129 (IFN-α/β/γ receptor-deficient) mouse models. AG129 mice induced comparable levels of virus-specific IgG after vaccination with influenza virus H5 hemagglutinin (HA) virus-like particles (VLPs). Vaccinated AG129 mice with HA VLPs exhibited impaired Th1-immune responses, lower hemagglutination inhibition (HAI) titers, increased susceptibility to virus infection, and lower survival rates following influenza virus (H5N1) challenge than vaccinated A129 mice.

View Article and Find Full Text PDF

T cell receptor (TCR) specificity is central to the efficacy of T cell therapies, yet scalable methods to map how TCR sequences shape antigen recognition remain limited. To address this, we introduce VelociRAPTR, a library-on-library approach that combines yeast-displayed TCR libraries with pMHC-displaying virus-like particles (pMHC-VLPs) to rapidly screen millions of TCR-antigen interactions. We show that pMHC-VLPs efficiently bind TCRs on yeast and generate equivalent data to recombinantly produced pMHC protein.

View Article and Find Full Text PDF