98%
921
2 minutes
20
Introduction: The gold standard treatment for peripheral nerve gap injury is nerve autograft transplantation. Although various nerve guidance conduits (NGCs) have been developed as alternatives to autografting, few reports have evaluated the effects of the internal structure of NGCs on nerve regeneration. We investigated how the internal structure of NGCs affects nerve regeneration.
Methods: In 30 male Wistar rats, a 5 mm segment of the left sciatic nerve was resected, creating a gap. The animals were then randomly divided into two groups. A 7 mm polyglycolic acid (PGA) conduit, with (PGA-c group) or without a collagen filling (PGA group), was used to bridge the gap (n = 15 for each group). At 2 and 4 weeks postoperatively, longitudinal sciatic nerve slices were fluorescently immunostained with RECA-1 for endothelial cells, S100 for Schwann cells, and TUJ1 for axons. The fluorescence-positive areas were quantitatively evaluated. Next, 32 male Wistar rats underwent resection of a 10 mm segment of the left sciatic nerve. The animals were then assigned into four groups: sham group, autograft group, PGA-c group (transplantation of 12-mm PGA-c), and hollow PGA group (transplantation of 12 mm hollow PGA) (n = 8 for each group). At 12 weeks postoperatively, morphological evaluations and neurofunctional analyses were performed.
Results: In longitudinal sciatic nerve slices, the PGA-c group had significantly larger RECA-1-positive areas proximally and distally at 2 weeks, larger S100-positive areas proximally at 2 weeks, and larger TUJ1-positive areas proximally at 4 weeks postoperatively than the PGA group. In the 10 mm nerve defect model, the PGA-c group had a significantly higher percentage of myelinated axons, isometric tetanic force, and tibialis anterior muscle wet weight than the PGA group.
Conclusions: The internal filling structure of the NGCs may promote nerve regeneration by providing a scaffold for cells involved in nerve regeneration and may restore motor function. These findings provide new insights into the further structural development of NGCs suitable for peripheral nerve regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320549 | PMC |
http://dx.doi.org/10.1016/j.reth.2025.07.011 | DOI Listing |
Neuropharmacology
September 2025
Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India. Electronic address:
Neuroinflammation is vital in vincristine-induced peripheral neuropathy (VIPN). Locally infiltrated macrophages polarize to pro-inflammatory M1-type, release inflammatory cytokines, and contribute to neuropathic pain. Histone deacetylase 3 (HDAC3) regulates macrophage polarization.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China.
Peripheral nerve injury (PNI) is notoriously difficult to repair due to impaired axonal regeneration and dysregulated inflammatory microenvironments. This study demonstrates that crocin facilitates peripheral nerve regeneration by modulating the STAT3/Bcl-2/Beclin-1 signaling axis, enhancing autophagy while suppressing NLRP3 inflammasome-mediated pyroptosis. In a rat model of sciatic nerve crush injury, crocin treatment improved axonal regrowth and ultrastructural remyelination, as evidenced by upregulated expression of β3-Tubulin, neurofilament-200 (NF200), and myelin basic protein (MBP), alongside significantly elevated sciatic functional index (SFI) scores, reduced muscle atrophy, and diminished collagen deposition.
View Article and Find Full Text PDFBMJ Open
September 2025
Salisbury NHS Foundation Trust, Salisbury, UK.
Introduction: Difficulty with walking can lead to reduced quality of life for people with Parkinson's disease (pwPD); improving walking is considered a treatment priority. Drug therapies can control PD symptoms; however, pwPD often still experience mobility problems.Functional electrical stimulation (FES) induces movement in weak muscles via external electrical stimulation.
View Article and Find Full Text PDFSpinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot Marie Tooth type 2S (CMT2S) are due to mutations in immunoglobulin mu binding protein two (IGHMBP2). We generated the -R604X mouse (R605X-humans) to understand how alterations in IGHMBP2 function impact disease pathology. The IGHMBP2-R605X mutation is associated with patients with SMARD1 or CMT2S.
View Article and Find Full Text PDFNeural Regen Res
September 2025
Department of Human Anatomy, Naval Medical University, Shanghai, China.
Peripheral nerve defect repair is a complex process that involves multiple cell types; perineurial cells play a pivotal role. Hair follicle neural crest stem cells promote perineurial cell proliferation and migration via paracrine signaling; however, their clinical applications are limited by potential risks such as tumorigenesis and xenogeneic immune rejection, which are similar to the risks associated with other stem cell transplantations. The present study therefore focuses on small extracellular vesicles derived from hair follicle neural crest stem cells, which preserve the bioactive properties of the parent cells while avoiding the transplantation-associated risks.
View Article and Find Full Text PDF