98%
921
2 minutes
20
Despite such assets as intrinsic safety and low cost, the performance of zinc-ion batteries (ZIBs) is hindered by interfacial processes that occur at the cathode. Because of capacity fading and poor rate capability, manganese dioxide (MnO) cathodes are also negatively affected. Here, the novel application of in situ grazing incidence x-ray absorption spectroscopy (GI-XAS) to investigate the cathode-electrolyte interfacial dynamics in a MnO cathode ZIB is demonstrated. By using a low-incidence angle X-ray beam to selectively probe the cathode surface, in situ changes are captured in the MnO oxidation state and local structure during charge-discharge. Results reveal that MnO undergoes a dissolution-redeposition mechanism at the interface. During discharge, Mn is reduced to Mn and further to Mn species that migrate into the electrolyte. Whilst charging, these Mn species form a transient Mn-rich layer on the cathode surface. This surface layer impedes Zn transport and causes increased overpotential, correlating with capacity decay. Such interfacial transformations are fully reversible in the bulk of the cathode but only partially reversible at the surface, thus leading to residual Mn/ Mn species after recharge. The findings provide direct evidence of cathode surface reconstruction as a potent contributor to performance degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202500871 | DOI Listing |
Phys Rev Lett
August 2025
RIKEN Center for Quantum Computing, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
We present a method for probing the quantum capacitance associated with the Rydberg transition of surface electrons on liquid helium using radio-frequency (rf) reflectometry. Resonant microwave excitation of the Rydberg transition induces a redistribution of image charges on capacitively coupled electrodes, giving rise to a quantum capacitance originating from adiabatic state transitions and the finite curvature of the energy bands. By applying frequency-modulated resonant microwaves to drive the Rydberg transition, we systematically measured a capacitance sensitivity of 0.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Gothenburg 412 96, Sweden.
Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Department of Physics & Engineering Physics, Morgan State University, Baltimore, MD 21251, USA.
Nanoscale biosensors have gained attention in recent years due to their unique characteristics and size. Manufacturing steps, cost, and other shortcomings limit the widespread use and commercialization of nanoscale electrodes. In this work, a nano-size electrode fabricated by directed electrochemical nanowire assembly and parylene-C insulation is introduced.
View Article and Find Full Text PDFNatl Sci Rev
September 2025
College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
The stress distribution in Li metal strongly affects the interfacial Li-ion diffusion, thereby influencing the morphology of plated Li and the performance of the battery. Here, we report a mechano-electrochemical coupling strategy that utilizes an arched structured carbon aerogel to achieve stable Li-plating/stripping electrochemistry. The arch-structured carbon aerogel can actively regulate stress distributions in response to the compressive stresses induced by Li deposition, generating the transition of stress from compressive on the convex surface to tensile on the concave surface, which can effectively promote the Li-migration kinetics and thus suppress the non-uniform deposition of Li.
View Article and Find Full Text PDF