98%
921
2 minutes
20
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, but its pathophysiological mechanisms remain elusive. It is a progressive disease, encompassing hepatic steatosis, steatohepatitis with (out) fibrosis, and ultimately cirrhosis and hepatocellular carcinoma. DNA methylation (DNAm) is dysregulated in MASLD and may play a central role in its pathogenesis. Additionally, aging is associated with MASLD and shares common processes of chronic inflammation and oxidative stress. Therefore, this study focuses on DNAm changes in relation to MASLD progression and epigenetic age acceleration (EAA).
Results: Liver biopsies from 22 individuals with varying MASLD status were analyzed using Infinium MethylationEPIC BeadChip arrays. Strikingly, progression of MASLD was characterized by gradual DNAm changes, revealing multiple associated KEGG pathways. Additionally, Horvath's EAA significantly correlated with MASLD stage and individual histological MASLD parameters while LiverClock's EAA correlated only with MASLD stage. In contrast, both Horvath's intrinsic EAA and HepClock's EAA showed no significant correlations. Integrative analyses, leveraging both gradual MASLD and Horvath's EAA DNAm signatures, gene expression (n = 118), and a MASLD-specific transcriptional regulatory network, identified (regulon-specific) transcription factors implicated in MASLD and EAA progression, representing a transcription factor-network of redox (ferroptosis), immune, and metabolic/endocrine related epigenetic processes.
Conclusion: Gradual DNAm changes were found to align with progression of MASLD and EAA, with EAA a potential nonbiased quantitative biomarker for MASLD. Integrative analysis highlighted potential new therapeutic transcription factor targets, with special emphasis on AEBP1 and emerging nuclear receptors including CAR(NR1I3), MR(NR3C2), GR(NR3C1), and ESRRG, underscoring the potential of epigenetic redox-metabolic therapies for MASLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323057 | PMC |
http://dx.doi.org/10.1186/s13148-025-01945-6 | DOI Listing |
Heart Lung Circ
September 2025
Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia. Electronic address:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a reach extending beyond the liver to include other metabolic syndrome-related disorders. Cardiovascular disease and type 2 diabetes mellitus are recognised non-communicable disorders and often downstream complications of MASLD and share similar risk factors. However, MASLD has not been afforded parity alongside other cardiometabolic non-communicable disorders, including the cardiovascular-kidney-metabolic (CKM) syndrome.
View Article and Find Full Text PDFRev Gastroenterol Mex (Engl Ed)
September 2025
Facultad de Nutrición, Universidad Federal de Bahía (UFBA), Salvador, Bahía, Brazil.
Introduction And Aims: Metabolic dysfunction-associated steatotic disease (MASLD) is the most common cause of chronic liver disease in children and adolescents. The development of MASLD is associated with dietary habits, and dietary intake characteristics are a relevant risk factor. The aim of the present study was to analyze dietary intake characteristics in children and adolescents and study how diet varies in subjects with and without MASLD.
View Article and Find Full Text PDFGut
September 2025
Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
Free Radic Biol Med
September 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China. Electronic address:
Metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver pathology, lacks effective therapies. This study identifies ferroptosis-a lipid peroxidation-driven, iron-dependent form of cell death-as a central pathogenic mechanism in MASLD. Integrative proteomic and histopathological analyses of human and murine MASLD livers revealed marked ferroptosis activation, characterized by dysregulated iron metabolism (reduced FTH1 and GPX4; elevated ACSL4) and oxidative stress.
View Article and Find Full Text PDFJ Adv Res
September 2025
School of Public Health and Nursing, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China. Electronic address:
Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents an increasing global health problem in association with obesity and insulin resistance without approved pharmacotherapy. Previous studies revealed malic enzyme 1 (ME1) as a susceptibility gene for metabolic disorders in humans. However, the role and mechanisms of ME1 in regulating hepatic lipid metabolism remain largely unclear.
View Article and Find Full Text PDF