98%
921
2 minutes
20
In recent years, there has been increasing interest in using carbon nanodots (CDs) as a component photoinitiator to initiate photopolymerization. These systems support conventional radical photopolymerization and light-mediated atom transfer radical polymerization (photo-ATRP), emphasizing single-component (Type I initiators) and multicomponent systems, which involve at least two reaction partners, specifically, the Type II CD initiator. The latter can function in both photoinduced conventional radical polymerization and photo-ATRP. CDs provide an important advantage by reducing toxicological concerns, as they are nontoxic to cells, and minimizing migration issues typically associated with molecular systems. Here we present two novel photopolymerization methods utilizing biomass-derived CDs as light-sensitive components. The first approach uses biobased furfural to create a Type I CD initiator for photoinduced uncontrolled radical polymerization, which initiates polymerization via homolytic bond cleavage of oxime ester groups attached to the CD surface. The second method employs sodium alginate to generate CDs capable of initiating photoinduced radical polymerization or activating alkyl halides in photo-ATRP processes. Key topics covered in these methods include (1) preparation and characterization of biomass-derived CDs; (2) experimental procedures for CD-assisted photo-induced conventional radical polymerization and photo-ATRP and (3) analysis of the resulting polymers. Preparing and characterizing the CDs takes ~4 d, while photochemical reactions can be conducted within 1 h, depending on requirements. Product separation and analysis take an additional 0.5 h. This protocol is designed for users with experience in polymer chemistry and CD handling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41596-025-01210-3 | DOI Listing |
RSC Adv
September 2025
Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai Tamil Nadu 602105 India.
A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.
View Article and Find Full Text PDFFront Microbiol
August 2025
Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
Polyurethane (PU), a segmented block copolymer with chemically resistant urethane linkages and tunable architecture, presents persistent biological recycling challenges. This study presents a Bacterial Laccase-Mediated System (BLMS) derived from for efficient degradation of polyester- and polyether-PU. Utilizing the laccase CotA and mediator 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the BLMS demonstrated effective de polymerization of both commercial and self-synthesized PU foams, including polyester- and polyether-types.
View Article and Find Full Text PDFMikrochim Acta
September 2025
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
As the most dangerous mycotoxin, aflatoxin B1 (AFB1) has caused some food safety issues to be concerned. In this study, a simultaneous detection and degradation method towards AFB1 was established. Covalent-organic frameworks (COFs) were firstly synthesized and directly in situ deposited on the stainless-steel mesh, which would trigger the free-radical polymerization of acrylamide to form a hydrogel coating.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Applied Sciences, National Institute of Technology Delhi, Delhi 110036, India.
The degradation of colorless tetracycline hydrochloride (TCH), a widely used antibiotic, is a significant environmental concern due to its persistence in aquatic systems. The zinc sulfide (ZnS) nanoparticle fabricated melamine-formaldehyde polymer (MFP)-based nanocomposite (ZnS-MFP) was prepared via a hydrothermal polymerization method, followed by surface modification through a simple precipitation route. The degradation of TCH through photocatalysis adheres to pseudo-first-order kinetics with a significantly faster rate under natural sunlight than under artificial bulb light.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
The -hydroxyphenyl (H) unit is an aromatic structure found in lignin, particularly abundant in compression wood and grass, and is derived from the incorporation of -coumaryl alcohol (-CMA). Although the structural and biosynthetic aspects of lignin have been extensively studied, the polymerization reactivity of H-unit during lignification remains poorly understood. In this study, horseradish peroxidase (HRP)-catalyzed homo- and co-oxidative coupling reactions (initial stage of enzymatic dehydrogenative polymerization) with -CMA and/or coniferyl alcohol (CA) were performed to investigate monolignol consumption, dilignol formation, and their potential involvement in subsequent polymerization.
View Article and Find Full Text PDF