Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Domain insertion engineering is a powerful approach to juxtapose otherwise separate biological functions, resulting in proteins with new-to-nature activities. A prominent example are switchable protein variants, created by receptor domain insertion into effector proteins. Identifying suitable, allosteric sites for domain insertion, however, typically requires extensive screening and optimization. We present ProDomino, a machine learning pipeline to rationalize domain recombination, trained on a semisynthetic protein sequence dataset derived from naturally occurring intradomain insertion events. ProDomino robustly identifies domain insertion sites in proteins of biotechnological relevance, which we experimentally validated in Escherichia coli and human cells. Finally, we used light- and chemically regulated receptor domains as inserts and demonstrate the rapid, model-guided creation of potent, single-component opto- and chemogenetic protein switches. These include novel CRISPR-Cas9 and -Cas12a variants for inducible genome engineering in human cells. Our work enables one-shot domain insertion engineering and substantially accelerates the design of customized allosteric proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328240PMC
http://dx.doi.org/10.1038/s41592-025-02741-zDOI Listing

Publication Analysis

Top Keywords

domain insertion
24
protein switches
8
insertion sites
8
sites domain
8
insertion engineering
8
human cells
8
domain
7
insertion
7
rational engineering
4
engineering allosteric
4

Similar Publications

African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.

View Article and Find Full Text PDF

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its superior sodium storage performance. However, the high cost of conventional HC precursors remains a critical challenge. To address this, coal─a low-cost, carbon-rich precursor─has been explored for HC synthesis.

View Article and Find Full Text PDF

Peptidoglycan hydrolases facilitate bacterial cell wall growth by creating space for insertion of new material and allowing physical separation of daughter cells. In Escherichia coli, three peptidoglycan amidases, AmiA, AmiB and AmiC, cleave septal peptidoglycan during cell division. The LytM-domain proteins EnvC, NlpD and ActS activate these amidases either from inside the cell or the outer membrane: EnvC binds to the cytoplasmic membrane-anchored divisome components FtsEX, while NlpD and ActS are outer membrane-anchored lipoproteins.

View Article and Find Full Text PDF

Peripherally inserted central catheters (PICCs) are widely used in hospital settings. To ensure optimal patient care, it is essential to assess nurses' knowledge before implementing targeted training interventions. This study aims to evaluate the knowledge of nurses working in inpatient settings regarding the indications, maintenance, complications, and removal of PICCs.

View Article and Find Full Text PDF

Programmable DNA integration using CRISPR-associated transposons (CASTs) offers powerful capabilities for genome engineering. The single effector Cas12k CAST examples evolved from a fixed guide TnpB nuclease protein. Here, we engineer de novo RNA-guided transposition systems, where the single guide RNA effector components are repurposed nuclease-dead TnpB-family proteins.

View Article and Find Full Text PDF