98%
921
2 minutes
20
Objectives: Tumour necrosis factor inhibitors (TNFi) are widely used and effective as treatment for immune-mediated inflammatory diseases (IMIDs). However, TNFi therapy causes a faster waning of antibody responses following vaccination. The underlying cause by which TNFi affect humoral immunity remains to be elucidated. The formation of long-lasting, high-affinity antibodies after vaccination results from germinal centre (GC)-derived, T cell-dependent B-cell responses. Therefore, this study investigated how TNFi affect the formation and maintenance of antigen-specific B- and CD4+ T-cell responses following SARS-CoV-2 mRNA vaccination.
Methods: SARS-CoV-2 spike-specific B-cell responses were characterised using spectral flow cytometry. Spike-specific CD4+ T cells were measured using an activation-induced marker assay. 15 patients with inflammatory bowel disease (IBD) treated with TNFi were compared with 9 IBD patients without systemic immunosuppression and 10 healthy controls.
Results: Spike-specific CD4+T-cell frequency and phenotype, including T follicular helper cells, were not affected by TNFi. Total spike-specific B-cell frequencies were reduced in TNFi-treated patients. Deep phenotyping revealed lower IgG+memory B-cell frequencies in TNFi-treated patients 3-6 months after vaccination. These data were confirmed in TNFi-treated rheumatoid arthritis patients. Interestingly, already at day 7 after the second vaccination, TNFi therapy reduced the induction of class-switched CD11c- CD71+activated B cells, which are believed to be GC-derived. Conversely, CD11c+B cells, associated with extrafollicular B-cell responses, were not affected by TNFi therapy.
Conclusions: These data suggest that TNFi therapy affects the differentiation of GC-derived B cells, which may explain its effect on humoral immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323530 | PMC |
http://dx.doi.org/10.1136/rmdopen-2025-005724 | DOI Listing |
Leukemia
September 2025
University Children's Hospital Zurich, Pediatric Oncology and Children's Research Center, Zurich, Switzerland.
Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2025
College of Marine Sciences, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and
The closely related cytokines Interleukin-4 (IL-4) and IL-13 regulate the Th2 immune response by interacting with their specific receptor complexes. MicroRNAs (miRNAs) modulate various biological pathways through mechanisms that either repress mRNA translation or promote messenger RNA degradation. The miRNA miR-126b is implicated in fish embryonic development.
View Article and Find Full Text PDFTissue Cell
September 2025
Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha 61421, Saudi Arabia.
Cardiotoxicity remains a major clinical challenge associated with various environmental and chemotherapeutic toxicants. Sunitinib (SNB) is a potent targeted cancer drug that is reported to induce severe organ damage including renal failure. Cirsiliol (CSL) is a natural flavone that exhibits marvelous pharmacological properties.
View Article and Find Full Text PDFSci Transl Med
September 2025
Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Human B cell immunity to the influenza hemagglutinin (HA) stem, a universal vaccine target, is often stereotyped and immunogenetically restricted, posing hurdles to study outside of humans. Here, we show that cynomolgus macaques vaccinated with an HA stem immunogen elicit humanlike public B cell lineages targeting two major conserved sites of vulnerability, the central stem and anchor epitopes. Central stem antibodies were predominantly derived from V1-138, the macaque homolog of human V1-69, a V gene preferentially used in human central stem broadly neutralizing antibodies (bnAbs).
View Article and Find Full Text PDFEur J Haematol
September 2025
Department of Hematology-Oncology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-cell therapies have revolutionized the approach and management of relapsed/refractory multiple myeloma (RRMM), and as of 2025, idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel) are the only BCMA-targeted CAR T-cell therapies approved by the FDA. Exceptional responses were demonstrated for heavily pretreated patients in the KarMMa-1 trial, reporting a 73% overall response rate (ORR) and 98% in the CARTITUDE-1 trial. Furthermore, both therapies show a significant improvement in progression-free survival (PFS) compared to standard regimens when administered in earlier lines.
View Article and Find Full Text PDF