Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Antibody-conjugated nanoparticles (ACNPs), particularly immunoliposomes (ILs), have gained significant attention in cancer treatment due to their enhanced efficacy and superior tissue penetration. However, their high production costs and technical challenges underscore the need for more cost-effective alternatives. Niosomes, with their lower production costs, improved stability, and biocompatibility, have emerged as promising alternatives to liposomes in drug delivery. This study introduces immunoniosomes (INs), a novel class of antibody-conjugated niosomes, through two conjugation strategies: (i) UV-NBS, a site-specific covalent conjugation method utilizing an indole ring structure for moderate binding to the variable regions of antibodies and Fab fragments, and (ii) EDC/NHS chemistry, which conjugates antibodies to carboxylated niosomes via primary amines on lysine sidechains. Bevacizumab, a monoclonal antibody targeting VEGF and approved for the treatment of various cancers including glioblastoma multiforme (GBM), was used as a model therapeutic. Both Bevacizumab and its Fab fragment were conjugated to niosomes and evaluated in U87 glioma cells (overexpressing VEGF) and human umbilical vein endothelial cells (HUVECs) (representing normal VEGF expression). Physicochemical characterization of the conjugated niosomes confirmed hydrodynamic sizes ranging from 100 to 200 nm, neutral surface charge, and dispersity indices below 0.5-properties critical for effective cellular penetration and drug delivery. Cellular toxicity assays, conducted at a 10× dilution from commonly reported concentrations, highlighted the role of the autocrine loop in U87 glioblastoma cells. Importantly, specific Nio-Fab conjugate formulations, created through both site-specific and randomized conjugation strategies, exhibited enhanced cytotoxicity toward U87 cells while sparing healthy endothelial HUVEC cells. In summary, this research establishes novel conjugation strategies to produce stable, site-specific, and randomized antibody-niosomal conjugates with enhanced half-life and selective toxicity against GBM cells. By offering an alternative route for antibody delivery through niosomal nanocarriers, these findings open new avenues for the development of more effective GBM therapeutics, warranting further non-clinical and clinical investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314386PMC
http://dx.doi.org/10.1016/j.ijpx.2025.100367DOI Listing

Publication Analysis

Top Keywords

conjugation strategies
12
immunoniosomes ins
8
edc/nhs chemistry
8
glioblastoma cells
8
production costs
8
drug delivery
8
conjugated niosomes
8
site-specific randomized
8
cells
7
niosomes
5

Similar Publications

Phase I dose escalation trials in oncology generally aim to find the maximum tolerated dose. However, with the advent of molecular-targeted therapies and antibody drug conjugates, dose-limiting toxicities are less frequently observed, giving rise to the concept of optimal biological dose (OBD), which considers both efficacy and toxicity. The estimand framework presented in the addendum of the ICH E9(R1) guidelines strengthens the dialogue between different stakeholders by bringing in greater clarity in the clinical trial objectives and by providing alignment between the targeted estimand under consideration and the statistical analysis methods.

View Article and Find Full Text PDF

Shigella type-III secretion system effectors counteract the induction of host inflammation and cell death.

EMBO J

September 2025

Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.

Many enteric bacterial pathogens deliver virulence effectors to counteract host innate immune responses, such as inflammation and cell death, and colonize the intestinal epithelium. However, host cells recognize the disruption of their innate immune signaling by bacterial effectors and induce alternative immune responses, collectively termed "effector-triggered immunity", to clear bacterial pathogens. Here, we describe a mechanism of cell death induction via effector-triggered immunity and the bacterial countermeasures of the pathogen Shigella flexneri.

View Article and Find Full Text PDF

Pancreatic cancer is a highly aggressive malignancy with a dismal prognosis, characterized by a complex tumor microenvironment that promotes immunosuppression and limits the efficacy of immune checkpoint blockade (ICB) therapy. Fibroblast activation protein (FAP) is overexpressed in the tumor stroma and represents a promising target for therapeutic intervention. Here, we developed a novel antibody-drug conjugate (ADC) targeting FAP, and investigated its anti-tumor activity and ability to enhance ICB efficacy in pancreatic cancer.

View Article and Find Full Text PDF

The anti-HER2 antibody‒drug conjugate (ADC) DS-8201 presents new hope for patients with advanced HER2-positive tumors. Its clinical application, however, is hindered by serious adverse reactions and reduced efficacy following long-term treatment. In this study, we investigated the factors influencing the sensitivity of DS-8201 and developed effective combination regimens to optimize its therapeutic efficacy.

View Article and Find Full Text PDF

The development of antiviral nanotherapeutics remains a formidable challenge due to the structural diversity and rapid evolution of viral surface glycoconjugates. Here, we report a rationally engineered multivalent Galectin-1 (Gal-1) nanoplatform based on 13-nm gold nanoparticles (AuNPs) for high-affinity glycan targeting and therapeutic inhibition of influenza virus. By leveraging site-specific conjugation and molecular orientation control, the AuNP/Gal-1 nanocomplex maximizes the exposure of carbohydrate recognition domains (CRDs) while preserving Gal-1's tertiary structure, as confirmed by molecular dynamics simulations and spectroscopic analyses.

View Article and Find Full Text PDF