Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Activating anionic redox activity in P2-type layered oxide cathodes is a promising pathway to enhance the specific capacity for sodium-ion batteries (SIBs). However, the highly active anionic redox process arising from the non-bonding O 2p orbitals frequently leads to irreversible oxygen release and surface degradation, which severely limit the long-term cycling stability. Herein, we propose a strategy of strengthening transition metal-oxygen (TM-O) π-type interaction with a regulated local oxygen coordination environment by incorporating the Ru/Ru redox couple into P2-type NaLiMnO (NLMO) to achieve a reversible anionic redox reaction. Upon high-voltage charging, the formed Ru state with a half-filled t 4d electronic configuration establishes a strengthened π-type interaction with non-bonding O 2p orbitals within the Na-O-Li configuration compared to the inherently weaker Mn-O π-type interaction in NLMO. Such a strengthened π-type interaction effectively enhances anionic redox reversibility, suppresses irreversible oxygen release and realizes a complete solid-solution behavior with stable TMO octahedra throughout cycling. This preserved structural integrity also prevents crack formation and minimizes transition metal dissolution, thereby mitigating surface degradation. The resulting NaLiMnRuO (NLMRO) thus exhibits a reversible anionic redox activity with markedly improved cycling stability. Our work highlights that dynamically engineering potent π-type interaction during electrochemical cycling is a promising avenue for developing high-performance SIBs with cumulative cationic and anionic redox reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311992PMC
http://dx.doi.org/10.1039/d5sc04609bDOI Listing

Publication Analysis

Top Keywords

anionic redox
28
π-type interaction
24
strengthened π-type
12
reversible anionic
12
layered oxide
8
oxide cathodes
8
redox
8
sodium-ion batteries
8
redox activity
8
non-bonding orbitals
8

Similar Publications

Convergent Paired Electrolysis Enables Electrochemical Halogen-Atom Transfer-Mediated Alkyl Radical Cross-Coupling.

J Am Chem Soc

September 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

The direct cross-coupling of unactivated alkyl halides with aryl or heteroaryl partners remains a fundamental challenge in synthetic chemistry due to their inertness and propensity for side reactions. Herein, we report a transition-metal-free electrochemical halogen-atom transfer strategy that enables efficient alkyl radical cross-coupling via convergent paired electrolysis. In this system, anodically generated α-aminoalkyl radicals mediate the activation of alkyl iodides, while aryl/heteroaryl aldehydes or nitriles undergo cathodic reduction to afford persistent ketyl radical anions or aryl radical anions.

View Article and Find Full Text PDF

Redox-active inverse crowns - pockets for heavier chalcogenides.

Dalton Trans

September 2025

Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.

The reactivity of the redox-active metal crown complex (BDI*)MgNaN'' (VI), formally containing a Mg centre, with phosphine chalcogenides, RPCh (Ch = O, S, Se, Te; R = Me, Et) was investigated (BDI* = HC[BuCN(DIPeP)] with DIPeP = 2,6-EtCH-phenyl). While all RPCh reagents could be reduced, only the heavier ones led to clean reduction to S, Se and Te anions which were captured in the metalla-cycle. The smaller S anion can be stabilized by the tetrametallic MgNa-crown but the larger Se and Te require a pentametallic MgNa-crown.

View Article and Find Full Text PDF

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF

Molecular switches and real-time ion sensing in pyridinium circuits a single-molecule STM-break junction.

Nanoscale Horiz

September 2025

Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, 9170022, Chile.

The functional electronic and spectro-electrochemical properties of two structural pyridinium isomers, Py_Down-BF and Py_Up-BF, were studied at the single-molecule level using the STM-BJ technique. These isomers differ in the position of the redox-active pyridinium core. The aim was to identify the role of core's position in promoting reversible switching between electromers (redox isomers) in solution and at the gold-pyridinium-gold junction circuit.

View Article and Find Full Text PDF

Phosphorus(V)-centered porphyrins (P(V)-porphyrins) are an important class of functional dyes in many fields of research, and axial ligands on the phosphorus atom affect the electronic properties of P(V)-porphyrins and add functions. Herein, we report on the synthesis and characterization of a hitherto unknown P(V)-porphyrin having hydrogen atoms as axial ligands (1·PF , PF is a counter anion). Synthesis of 1·PF was achieved by treatment of dichloro-derivative (2·Cl) with LiAlH followed by AgPF via hydride reduction accompanied by one-electron reduction and one-electron oxidation.

View Article and Find Full Text PDF