98%
921
2 minutes
20
Introduction: Intrinsically disordered regions (IDRs) of proteins have traditionally been overlooked as drug targets. However, with growing recognition of their crucial role in biological activity and their involvement in various diseases, IDRs have emerged as promising targets for drug discovery. Despite this potential, rational methodologies for IDR-targeted drug discovery remain underdeveloped, primarily due to a lack of reference experimental data.
Methods: This study explores a machine learning approach to predict IDR functions, drug interaction sites, and interacting molecular substructures within IDR sequences. To address the data gap, stepwise transfer learning was employed. IDRdecoder sequentially generate predictions for IDR classification, interaction sites, and interacting ligand substructures. In the first step, the neural net was trained as autoencoder by using 26,480,862 predicted IDR sequences. Then it was trained against 57,692 ligand-binding PDB sequences with higher IDR tendency via transfer learning for predict ligand interacting sites and ligand types.
Results: IDRdecoder was evaluated against 9 IDR sequences, which were experimentally detailed as drug targets. In the encoding space, specific GO terms related to the hypothesized functions of the evaluation IDR sequences were highly enriched. The model's prediction performance for drug interacting sites and ligand types demonstrated the area under the curve (AUC) of 0.616 and 0.702, respectively. The performance was compared with existing methods including ProteinBERT, and IDRdecoder demonstrated moderately improved performance.
Discussion: IDRdecoder is the first application for predicting drug interaction sites and ligands in IDR sequences. Analysis of the prediction results revealed characteristics beneficial for IDR-drug design; for instance, Tyr and Ala are preferred target sites, while flexible substructures, such as alkyl groups, are favored in ligand molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313641 | PMC |
http://dx.doi.org/10.3389/fbinf.2025.1627836 | DOI Listing |
Int J Biol Macromol
September 2025
National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; International Resea
Phase separation has been discovered as a new form of regulation in innate immunity. Here, we found that IL6Ra in teleost fish has a unique intrinsic disordered region (IDR) in its amino acid sequence, distinguishing it from the IL6Ra of higher vertebrates. This unique feature endows IL6Ra with the ability to undergo liquid-liquid phase separation, enabling the organism to swiftly initiate an immune response at the early stages of viral infection.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA. Electronic address:
RNA polymerase II (RNAPII) is regulated by sequence-specific transcription factors (TFs) and the pre-initiation complex (PIC): TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and Mediator. TFs, Mediator, and RNAPII contain intrinsically disordered regions (IDRs) and form phase-separated condensates, but how IDRs control RNAPII function remains poorly understood. Using purified PIC factors, we developed a real-time in vitro fluorescence transcription (RIFT) assay for second-by-second visualization of transcription at hundreds of promoters simultaneously.
View Article and Find Full Text PDFJ Mol Biol
September 2025
Department of Biochemistry and Biophysics Oregon State University, Corvallis, Oregon, USA. Electronic address:
Ferlins are vesicle trafficking proteins composed of folded C2 domains conjugated by linkers which are largely disordered. Although a role for the C2 domains as calcium sensors has been established it remains unclear whether the linkers function beyond acting as passive spacers. We examined the C2A-C2B linker sequences of vertebrate ferlins and found both putative short linear motifs (SLiMs) as well as membrane binding sequences for members of the protein family.
View Article and Find Full Text PDFArXiv
August 2025
Department of Genetics, Yale University, New Haven, CT 06510, USA.
A key output of the NIH-Common Fund 4D Nucleome (4DN) project is the open publication of datasets related to the structure of the human cell nucleus and the genome. Recent years have seen a rapid expansion of multiplexed Fluorescence In Situ Hybridization (FISH) or FISH-omics methods, which quantify the spatial organization of chromatin in single cells, sometimes together with RNA and protein measurements, and provide an expanded understanding of how 3D higher-order chromosome structure relates to transcriptional activity and cell development in both health and disease. Despite this progress, results from Chromatin Tracing FISH-omics experiments are difficult to share, reuse, and subject to third-party downstream analysis due to the lack of standard specifications for data exchange.
View Article and Find Full Text PDFNat Commun
August 2025
RIKEN Center for Biosystems Dynamics Research (BDR), Yokohama, Kanagawa, Japan.
DDX3X, a member of the DEAD-box RNA helicase family, plays a central role in the translational regulation of gene expression through its unwinding activity toward complex RNA structures in messenger RNAs (mRNAs). Although DDX3X is known to selectively stimulate the translation of a subset of genes, a specific sequence motif has not been identified; thus, the molecular mechanism underlying this selectivity remains elusive. Using solution nuclear magnetic resonance (NMR) spectroscopy, we demonstrate that the N-terminal intrinsically disordered region (IDR) of DDX3X plays a critical role in the binding and unwinding of structured RNAs.
View Article and Find Full Text PDF