Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Peripheral nerve injuries involving nerve defects remain challenging to treat. Although autologous nerve grafting is considered the gold standard, it has notable limitations, including donor site morbidity. To address this, we developed a scaffold-free Bio 3D conduit composed of human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) using bioprinting technology. In this study, we evaluated its efficacy and safety in a canine ulnar nerve defect model. At 10 weeks postoperatively, the Bio 3D group showed better motor and sensory recovery compared with the allograft group, as demonstrated by the pinprick test, electrophysiological studies, and hypothenar muscle wet weight (0.978 ± 0.100 vs. 0.637 ± 0.151, n = 3). Morphometric analysis revealed greater axonal regeneration, including larger myelinated axon diameters (4.27 ± 0.342 µm vs. 3.69 ± 0.161 µm, n = 3) and thicker myelin sheaths (0.621 ± 0.088 µm vs. 0.497 ± 0.021 µm, n = 3). Immunostaining showed that the number of transplanted UC-MSCs diminished over time, likely after exerting their therapeutic effects. No adverse events, systemic abnormalities, or distant human cell migration was observed. These findings suggest that UC-MSC-derived Bio 3D conduits are a promising alternative for peripheral nerve regeneration, especially for patients wishing to avoid donor nerve harvesting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322347PMC
http://dx.doi.org/10.1177/09636897251361711DOI Listing

Publication Analysis

Top Keywords

efficacy safety
8
bio conduits
8
composed human
8
human umbilical
8
umbilical cord-derived
8
cord-derived mesenchymal
8
mesenchymal stromal
8
stromal cells
8
canine ulnar
8
ulnar nerve
8

Similar Publications

The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.

View Article and Find Full Text PDF

Characterization and Antimicrobial Efficacy of a Bacteriophage Targeting Multidrug-Resistant .

ACS Infect Dis

September 2025

Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.

The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.

View Article and Find Full Text PDF

A Minimally Invasive Method for Generating a Syngeneic Orthotopic Mouse Model of Lung Cancer.

J Vis Exp

August 2025

Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa; Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa; Geminii, Inc.

Non-small cell lung cancer (NSCLC) continues to be the number one cause of cancer-related death for both women and men worldwide. More information needs to be gathered to understand the interactions between cancer cells, the immune system, the microenvironment within each tumor, and the host tissue to develop more effective treatment modalities. Reported here is a simple, repeatable method for inducing cancer within the mouse lung, allowing for the monitoring of tumor growth from early to late-stage disease.

View Article and Find Full Text PDF

Purpose: Varlilumab is a CD27 agonist antibody, delivering a T-cell costimulation. Preclinical studies show agonistic CD27 antibodies can activate intratumoral T-cells to release chemokines and cytokines to augment macrophage-dependent tumor killing induced by CD20 antibodies, i.e.

View Article and Find Full Text PDF

Exploring Antiviral Strategies to Combat African Swine Fever.

FEMS Microbiol Rev

September 2025

CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.

African Swine Fever (ASF), caused by the highly contagious African swine fever virus (ASFV), poses a significant threat to domestic and wild pigs worldwide. Despite its limited host range and lack of zoonotic potential, ASF has severe socio-economic and environmental consequences. Current control strategies primarily rely on early detection and culling of infected animals, but these measures are insufficient given the rapid spread of the disease.

View Article and Find Full Text PDF