98%
921
2 minutes
20
Polyether electrolytes (PEs) have attracted significant research and industrial interest for high-performance lithium metal batteries (LMBs). However, traditional PEs are limited by their low lithium-ion (Li) conductivity primary due to strong Li⁺-polymer interactions (i.e. Li-oxygen coordination). Current approaches of modifying polymer molecular structures are largely challenged by the inherent molecular structural constraints of specific polymers and the complexity of the required structural engineering processes. Herein, a novel and straightforward strategy i proposed to reduce the Li-polymer interaction, increase free-Li concentration, and introduce ion-channels by regulating the microenvironment of PEs through introducing Ge sites with weak Lewis acidity during in situ polymerization. In this way, the microenvironment regulates PE with a high ionic conductivity of 1.83 mS cm at 25 °C and a Li transference number of 0.8 is achieved. Remarkably, the electrolyte exhibits extraordinary cycling stability in Li||Li symmetric cells for over 2000 h, demonstrating dendrite-free Li metal deposition during prolonged cycling. Moreover, the assembled Li||LiFePO cells achieve an impressive capacity retention of 92.1% and ≈100% Coulombic efficiency after a long-term stability of 2190 cycles at 5 C. This work provides new insight into the design of polymer electrolytes for high-performance LMBs through microenvironment regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202510197 | DOI Listing |
Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.
View Article and Find Full Text PDFCarcinogenesis
September 2025
Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611-3010, USA.
Esophageal cancer is a major cause of cancer-related death, often preceded with chronic inflammation and injuries. The NFκB/IKKβ pathway plays a central role in inflammation, yet its role in early esophageal carcinogenesis remains unclear. This study investigated the role of epithelial IKKβ in early esophageal carcinogenesis.
View Article and Find Full Text PDFCancer Rep (Hoboken)
September 2025
Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Centre of Soochow University, Suzhou, Jiangsu, China.
Background: Epigenetic regulation significantly affects immune responses in lung adenocarcinoma (LUAD). However, the role of RNA N6-methyladenosine (m6A) modification, especially in obstructive sleep apnea-hypopnea syndrome (OSAHS) within LUAD, is not well understood.
Methods: This study examined m6A modification patterns in 973 LUAD patients using 23 regulatory genes.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China.
Objectives: To identify immunosuppressive neutrophil subsets in patients with prostate cancer (PCa) and construct a risk prediction model for prognosis and immunotherapy response of the patients based on these neutrophil subsets.
Methods: Single-cell and transcriptome data from PCa patients were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Neutrophil subsets in PCa were identified through unsupervised clustering, and their biological functions and effects on immune regulation were analyzed by functional enrichment, cell interaction, and pseudo-time series analyses.
Biochem Biophys Res Commun
August 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China. Electronic address:
Malignant tumors present a major global health burden, as they generally have a poor prognosis, and the efficacy of available treatments is limited. Copine family members (CPNEs) play crucial roles in the regulation of tumor cell proliferation, metastasis, and therapeutic resistance, as well as in tumor diagnosis and prognostic risk stratification. CPNEs can facilitate tumor cell survival by regulating cell cycle progression and cell death.
View Article and Find Full Text PDF