98%
921
2 minutes
20
We present the methods and results of our protein complex and RNA structure predictions at CASP16. Our approach integrated multiple state-of-the-art deep learning models with a consensus-based scoring method. To enhance the depth of multiple sequence alignments (MSAs), we employed a large metagenomic sequence database. Model ranking was performed with a state-of-the-art consensus ranking method, to which we added more scoring terms. These predictions were further refined manually based on literature evidence. For RNA, we adopted an ensemble approach that incorporated multiple state-of-the-art methods, centered around our NuFold framework. As a result, our KiharaLab group ranked first in protein complex prediction and third in RNA structure prediction. A detailed analysis of targets that significantly differed from those of other groups highlighted both the strengths of our MSA and scoring strategies, as well as areas requiring further improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321240 | PMC |
http://dx.doi.org/10.1002/prot.70033 | DOI Listing |
Biochem Biophys Res Commun
September 2025
Department of Ophthalmology, Hebei Medical University, NO. 361 Zhongshan East Road, Changan District, Shijiazhuang City, Hebei Province, China; Department of Ophthalmology, Hebei General Hospital, NO. 348 Heping West Road, Xinhua District, Shijiazhuang City, Hebei Province, China. Electronic address
Diabetic retinopathy (DR) is among the most prevalent complications linked to advanced diabetes. Capillary Basement membrane (CBM) thickening is an early clinical manifestation in DR, and Laminin α 1 (LAMA1) is one of the main extracellular matrix components involved in CBM formation. Dapagliflozin (DAPA) has demonstrated efficacy in ameliorating DR.
View Article and Find Full Text PDFDriven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Maths and Computer Science, Faculty of Science, University of Kinshasa, Kinshasa, The Democratic Republic of the Congo.
Reliable and timely fault diagnosis is critical for the safe and efficient operation of industrial systems. However, conventional diagnostic methods often struggle to handle uncertainties, vague data, and interdependent multi-criteria parameters, which can lead to incomplete or inaccurate results. Existing techniques are limited in their ability to manage hierarchical decision structures and overlapping information under real-world conditions.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
This study investigates the relationship between dietary antioxidants and heart failure (HF) risk using nationally representative National Health and Nutrition Examination Survey data (2005-2018). It aims to identify key dietary antioxidants and develop a machine-learning-based predictive model for HF. Among 9279 participants (434 HF cases), 44 dietary antioxidant variables were extracted from two 24-h dietary recalls.
View Article and Find Full Text PDF