Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Acoustic features are crucial behavioral indicators for depression detection. However, prior speech-based depression detection methods often overlook the variability of emotional patterns across samples, leading to interference from speaker identity and hindering the effective extraction of emotional changes. To address this limitation, we developed the Emotional Word Reading Experiment (EWRE) and introduced a method combining self-supervised and supervised learning for depression detection from speech called MFE-Former. First, we generate fine-grained emotional representations for response segments by computing cosine similarity between intra-sample and inter-sample contexts. Concurrently, orthogonality constraints decouple identity information from emotional features, while a Transformer decoder reconstructs spectral structures to improve sensitivity to depression-related emotional patterns. Next, we propose a multi-scale emotion change perception module and a Bernoulli distribution-based joint decision module integrate multi-level information for depression detection. By enhancing the distribution differences among positive, neutral, and negative emotional features, we find that patients with depression are more inclined to express negative emotions, whereas healthy individuals express more positive emotions. The experimental results on EWRE and AVEC 2014 show that MFE-Former outperforms state-of-the-art temporal methods under conditions of variability in emotional patterns across samples. MFE-Former has been open sourced on https://github.com/QLUTEmoTechCrew/MFE-Former.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2025.3594166 | DOI Listing |