Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A molecular understanding of lung organogenesis requires delineation of the timing and regulation of the cellular transitions that ultimately form and support a surface capable of gas exchange. Although the advent of single-cell transcriptomics has allowed for the discovery and identification of transcriptionally distinct cell populations present during lung development, the spatiotemporal dynamics of these transcriptional shifts remain undefined. With imaging-based spatial transcriptomics, we analyzed the gene expression patterns in 17 human infant lungs at varying stages of development and injury, creating a spatial transcriptomic atlas of approximately 1.2 million cells. We applied computational clustering approaches to identify shared molecular patterns among this cohort, informing how tissue architecture and molecular spatial relationships are coordinated during development and disrupted in disease. Recognizing that all preterm birth represents an injury to the developing lung, we created a simplified classification scheme that relies upon the routinely collected objective measures of gestational age and lifespan. Within this framework, we have identified cell type patterns across gestational age and life span variables that would likely be overlooked when using the conventional "disease versus control" binary comparison. Together, these data represent an open resource for the lung research community, supporting discovery-based inquiry and identification of targetable molecular mechanisms in both normal and arrested human lung development. Mapping the spatial and temporal transcriptional relationships during lung development is fundamental to understanding regeneration and chronic lung disease; however, the classification of samples as control or disease is especially challenging in the setting of preterm birth (itself a lung injury). Here, we report the largest neonatal lung transcriptomic atlas to date and an analysis framework based only on gestational age and lifespan, providing a new resource for hypothesis generation to the lung community.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00191.2025DOI Listing

Publication Analysis

Top Keywords

transcriptomic atlas
12
lung development
12
gestational age
12
lung
11
spatial transcriptomic
8
neonatal lung
8
lung injury
8
preterm birth
8
age lifespan
8
lung community
8

Similar Publications

Objectives: To identify immunosuppressive neutrophil subsets in patients with prostate cancer (PCa) and construct a risk prediction model for prognosis and immunotherapy response of the patients based on these neutrophil subsets.

Methods: Single-cell and transcriptome data from PCa patients were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Neutrophil subsets in PCa were identified through unsupervised clustering, and their biological functions and effects on immune regulation were analyzed by functional enrichment, cell interaction, and pseudo-time series analyses.

View Article and Find Full Text PDF

Mevalonate Metabolic Reprogramming Drives Cisplatin Resistance in Bladder Cancer: Mechanisms and Therapeutic Targeting.

Protein Pept Lett

September 2025

Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou730000, Gansu, China.

Introduction: Dysregulation of mevalonate metabolism is a hallmark of tumorigenesis and therapy resistance across malignancies, though its role in bladder cancer remains unclear. This study aimed to elucidate its impact on prognosis and cisplatin chemosensitivity in bladder cancer.

Methods: Transcriptomic data and clinical information of bladder cancer patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.

Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.

View Article and Find Full Text PDF

Standardizing single-cell approaches to osteoarthritis: Toward a comprehensive cellular atlas.

Osteoarthritis Cartilage

September 2025

Laboratory of Skeletal Biomedicine, IBIMA Plataforma BIONAND, Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga 29071, Spain. Electronic address:

Osteoarthritis (OA) is a degenerative joint disease marked by progressive cartilage degradation and complex cellular heterogeneity. In recent years, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for dissecting the cellular composition of the osteoarthritic joint. However, constructing a complete and coherent picture of the OA single-cell landscape remains challenging, akin to assembling a puzzle from multiple sets, each with pieces of varying shapes and sizes.

View Article and Find Full Text PDF

Single-cell transcriptomic atlas of human retina from Chinese donors reveals population-specific cellular diversity.

Exp Eye Res

September 2025

Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China. Electronic address:

The human retina exhibits complex cellular heterogeneity which is critical for visual function, yet comprehensive ethnic-specific references are scarce in ophthalmic transcriptomics. The lack of single-cell RNA sequencing (scRNA-seq) data from Asian populations particularly Chinese donors imposes significant limitations in understanding population-specific retinal biology. We constructed the first comprehensive single-cell transcriptomic atlas of the human retina from Chinese donors, generated through high-throughput scRNA-seq of ∼290,000 viable cells obtained from 18 fresh retinal specimens (living donor and post-mortem specimens).

View Article and Find Full Text PDF