A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dataset of binocularly coded steady-state visual evoked potentials recorded with an augmented reality headset. | LitMetric

Dataset of binocularly coded steady-state visual evoked potentials recorded with an augmented reality headset.

Sci Data

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have shown significant promise for practical applications. The integration of SSVEP-BCIs with head-mounted augmented-reality (AR) displays is expected to foster wearable, portable systems; nevertheless, empirical resources for such configurations are scarce, especially for paradigms employing innovative stimulation paradigms. Here we present a curated SSVEP dataset recorded with a binocular AR headset that independently modulates the visual input to each eye and a lightweight electroencephalography recorder. Beyond the conventional binocular-congruent single-frequency stimulation adopted in AR-SSVEP studies, the dataset systematically explores binocular-incongruent dual-frequency encoding whereby the two lenses render flickers with distinct frequencies and/or phases. We report comparative analyses of SSVEP characteristics and BCI performance under congruent versus incongruent protocols, and delineate the influence of inter-ocular frequency and phase disparities. The results substantiate the feasibility of wearable AR-SSVEP-BCIs and highlight binocular-incongruent dual-frequency stimulation as a compelling strategy for improving target separability. The dataset should accelerate research on portable SSVEP-BCIs, novel encoding schemes, and the neural mechanisms of binocular vision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314094PMC
http://dx.doi.org/10.1038/s41597-025-05696-0DOI Listing

Publication Analysis

Top Keywords

binocular-incongruent dual-frequency
8
dataset
4
dataset binocularly
4
binocularly coded
4
coded steady-state
4
steady-state visual
4
visual evoked
4
evoked potentials
4
potentials recorded
4
recorded augmented
4

Similar Publications