Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Prenatal exposure to cadmium (Cd) and arsenic (As) can severely impair fetal lung development, leading to lifelong adverse effects. As two of the most common and toxic heavy metals, Cd and As pose risks to many communities through food and water consumption. We have shown that prenatal co-exposure to Cd and As at levels relevant to human intake inhibits branching morphogenesis, yet cell-type-specific mechanisms remain elusive. Here we examined early embryonic lungs (E12) from mice exposed prenatally to either 0 (control) or 250 (treated) ppb of both Cd and As. Through single-cell multiome sequencing (scATAC-seq+scRNA-seq) and high-resolution metabolomics, we present a multifaceted landscape of Cd and As-induced molecular and cellular disruption. We identified 19 cell states exhibiting state-specific changes in gene expression related to cell proliferation and differentiation. Velocity analysis integrating RNA splicing and chromatin kinetics showed profound disruptions in cell fate, particularly affecting differentiation of + proximal progenitors and mesenchymal progenitors. Gene regulatory network analysis pinpointed the diminished function of and as central to these disruptions, which was further confirmed by their reduced protein expression in exposed E12, E14.5 and E17 lungs. Additionally, metabolomic alterations in polyamine, tyrosine and fatty acid biosynthesis correlated with changes in gene expression of catalytic enzymes. These findings demonstrate that Cd and As at levels relevant to human exposure impair early airway formation across multiple regulatory levels, including chromatin accessibility, transcription and cell metabolism, and provide insights into the factors central to cell resilience during this vulnerable stage of lung development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/rcmb.2024-0563OC | DOI Listing |