A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

AC-YOLO: A lightweight ship detection model for SAR images based on YOLO11. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synthetic Aperture Radar (SAR), renowned for its all-weather monitoring capability and high-resolution imaging characteristics, plays a pivotal role in ocean resource exploration, environmental surveillance, and maritime security. It has become a fundamental technological support in marine science research and maritime management. However, existing SAR ship detection algorithms encounter two major challenges: limited detection accuracy and high computational cost, primarily due to the wide range of target scales, indistinct contour features, and complex background interference. To address these challenges, this paper proposes AC-YOLO, a novel lightweight SAR ship detection model based on YOLO11. Specifically, we design a lightweight cross-scale feature fusion module that adaptively fuses multi-scale feature information, enhancing small target detection while reducing model complexity. Additionally, we construct a hybrid attention enhancement module, integrating convolutional operations with a self-attention mechanism to improve feature discrimination without compromising computational efficiency. Furthermore, we propose an optimized bounding box regression loss function, the Minimum Point Distance Intersection over the Union (MPDIoU), which establishes multi-dimensional geometric metrics to accurately characterize discrepancies in overlap area, center distance, and scale variation between predicted and ground truth boxes. Experimental results demonstrate that, compared with the baseline YOLO11 model, AC-YOLO reduces parameter count by 30.0% and computational load by 15.6% on the SSDD dataset, with an average precision (AP) improvement of 1.2%; on the HRSID dataset, the AP increases by 1.5%. This model effectively reconciles the trade-off between complexity and detection accuracy, providing a feasible solution for deployment on edge computing platforms. The source code for the AC-YOLO model is available at: https://github.com/He-ship-sar/ACYOLO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309994PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327362PLOS

Publication Analysis

Top Keywords

ship detection
12
detection model
8
based yolo11
8
sar ship
8
detection accuracy
8
detection
6
model
6
ac-yolo
4
ac-yolo lightweight
4
lightweight ship
4

Similar Publications