98%
921
2 minutes
20
The concept of metabolic disruption through exposure to chemicals has expanded our understanding of how environmental pollution can contribute to metabolic dysregulation and, ultimately, diseases like obesity. New strategies for assessing the risks posed by chemicals are needed, and omics technologies, including proteomics, have proven to be powerful tools for investigating the molecular mechanisms of these metabolism-disrupting chemicals (MDCs). A potential MDC is the plasticizer DINCH─an alternative to legacy phthalates like DEHP, whose primary metabolite MINCH has been linked to the induction of adipogenesis and lipid accumulation. Here, global proteomics was complemented with insights into protein thermal stability and the profiles of post-translational modification (PTM) acetylation and phosphorylation to provide a profound understanding of chemical-induced metabolic disruption in adipocytes. We demonstrate the utility of advanced proteomics approaches in assessing the effects of potential MDCs by using the human SGBS adipocyte cell line. Adipose tissue PTM data from dietary DINCH-exposed mice were assessed as an model, and data shed light on DINCH's molecular effects, including protein interactions beyond its primary target PPARγ. The results emphasize the potential of omics approaches to enhance current risk assessment frameworks for emerging contaminants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355959 | PMC |
http://dx.doi.org/10.1021/acs.est.5c01206 | DOI Listing |
Transl Oncol
September 2025
Pharmacy of Jiangxi cancer hospital&institute, Nanchang, Jiangxi, China. Electronic address:
Background: Renal cell carcinoma (RCC) is a common malignant tumor with metabolic reprogramming and immune evasion features. δ-Aminolevulinic acid dehydratase (ALAD), a key enzyme in heme biosynthesis, has been implicated in cancer progression and treatment outcomes, but its role in RCC remains unclear.
Methods: This study integrated multi-omics datasets from TCGA, CPTAC, and GEO to analyze ALAD's expression, prognostic value, and functional implications in RCC.
J Proteome Res
September 2025
Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China.
Colorectal cancer (CRC) is a major global health challenge due to its high incidence, mortality, and low rate of early detection. Early diagnosis, targeting precancerous lesions (advanced adenomas) and early stage CRC (Tis and T1), is critical for improving patient survival. Given the limitations of current detection methods for advanced adenomas, developing high-performance early diagnostic strategies is essential for effective prevention.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, Hunan 410060, P.R. China.
S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFCell Rep Methods
September 2025
Lingang Laboratory, Shanghai 201306, China. Electronic address:
While affinity purification-mass spectrometry (AP-MS) has significantly advanced protein-protein interaction (PPI) studies, its limitations in detecting weak, transient, and membrane-associated interactions remain. To address these challenges, we introduced a proteomic method termed affinity purification coupled proximity labeling-mass spectrometry (APPLE-MS), which combines the high specificity of Twin-Strep tag enrichment with PafA-mediated proximity labeling. This method achieves improved sensitivity while maintaining high specificity (4.
View Article and Find Full Text PDF