98%
921
2 minutes
20
Microneedles (MNs) represent a transformative technology in pharmaceutics, offering a minimally invasive method for drug delivery that enhances patient compliance and therapeutic efficacy. By enabling transdermal administration, MNs provide a promising option to conventional routes of drug delivery, such as injections and oral administration, which may cause discomfort and lead to poor adherence. This review provides a comprehensive analysis of polymeric MNs, with a particular focus on their fabrication techniques, polymer selection strategies, and pharmaceutical characterization methods. It critically examines the latest advancements in manufacturing approaches, emphasizing the role of biocompatible and biodegradable polymers in enhancing drug solubility, stability, and controlled release. This review provides insights into the current landscape of polymeric MN applications in drug delivery , highlighting their potential to revolutionize therapeutic interventions across diverse medical fields. Ongoing advancements in polymeric MN technology could lead to significant improvements in patient outcomes, positioning MNs as a cornerstone of the next generation of drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0113816128376011250706183030 | DOI Listing |
Crit Rev Ther Drug Carrier Syst
January 2025
The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.
View Article and Find Full Text PDFCrit Rev Ther Drug Carrier Syst
January 2025
Department of Pharmacology, PSG College of Pharmacy, Coimbatore 641004, Tamil Nadu, India.
Treating neurological disorders is challenging due to the blood-brain barrier (BBB), which limits therapeutic agents, including proteins and peptides, from entering the central nervous system. Despite their potential, the BBB's selective permeability is a significant obstacle. This review explores recent advancements in protein therapeutics for BBB-targeted delivery and highlights computational tools.
View Article and Find Full Text PDFChem Rev
September 2025
Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, P. R. China.
Diffusion is a fundamental process in the transfer of mass and energy. Diffusion metamaterials, a class of engineered materials with distinctive properties, enable precise control and manipulation of diffusion processes. Meanwhile, topology, a branch of mathematics, has attracted growing interest within the condensed matter physics community.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
September 2025
Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
The prevalence of inflammatory bowel disease (IBD), including crohn's disease and ulcerative colitis, is rising worldwide. Among various potential contributors, low dietary fiber (DF) diet habit stands out as a substantial factor in this accelerating trend. Conversely, DF supplementation inhibits the manifestation of IBD pathology and promotes inflammatory remission.
View Article and Find Full Text PDFMacromol Biosci
September 2025
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain.
This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.
View Article and Find Full Text PDF