Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The kidneys are vital organs responsible for filtering and eliminating toxins from the body. Chronic kidney disease (CKD) is becoming increasingly prevalent, affecting not only older adults but also younger populations. To minimize kidney damage for those at risk, an accurate assessment and monitoring of CKD are crucial. Machine learning models can assist physicians in this task by providing fast and accurate detection. As a result, many health care systems have adopted machine learning, especially for disease diagnosis. In this study, we developed a system to support the diagnosis of CKD. The data were collected from the UCL machine learning database, with missing values filled using the "mean/mode" and the "random sampling method." After data processing, we applied the polynomial technique to generate additional features, allowing the models to be better generalized. Then, we utilized feature-based stratified splitting with K-means and implemented 6 machine learning algorithms (Random Forest, Support Vector Machine [SVM], Naive Bayes, Logistic Regression, K-Nearest Neighbor [KNN], and XGBoost) to compare their performance based on accuracy. Among them, Random Forest, XGBoost, SVM, and logistic regression achieved the highest accuracy of 100%, followed by Naive Bayes (97%) and KNN (93%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304504PMC
http://dx.doi.org/10.1177/11779322251356563DOI Listing

Publication Analysis

Top Keywords

machine learning
20
chronic kidney
8
random forest
8
naive bayes
8
logistic regression
8
machine
6
learning techniques
4
techniques chronic
4
kidney diseases
4
diseases comparative
4

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF