Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrogels are widely recognized for their excellent flexibility and biocompatibility, making them promising materials for skin regeneration and wound care. However, the practical application of traditional hydrogels is limited by their inadequate mechanical strength and poor adhesive properties, hindering their effectiveness in wound healing. In this study, we designed a cellulose-based composite hydrogel, which overcomes these limitations by combining cellulose dialdehyde (DAC), carboxymethyl chitosan (CMCS) and polymerizable acrylamide (AM). The hydrogel features a double network structure: a dynamic chemical bonding network via a Schiff base reaction and a covalent bonding network formed through free radical polymerization. The resulting hydrogel exhibited remarkable mechanical properties, including tensile strength (>400 kPa), stretchability (>1400 %), toughness (>2900 kJ m), and good self-adhesion to skin (2.7 kPa). Additionally, it demonstrated excellent biocompatibility and significantly accelerated wound healing in a mouse model of full-thickness skin defects. The synthesized hydrogel represents a promising advancement in the development of wound care materials. Its enhanced mechanical strength, self-adhesion, and biocompatibility make it a strong candidate for clinical applications in skin regeneration and wound therapy, addressing critical gaps in the current hydrogel-based wound care technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2025.123869DOI Listing

Publication Analysis

Top Keywords

wound care
12
double network
8
skin regeneration
8
regeneration wound
8
mechanical strength
8
wound healing
8
bonding network
8
wound
7
hydrogel
5
highly stretchable
4

Similar Publications

Background: Charcot foot is a debilitating complication of peripheral neuropathy and is primarily associated with diabetes, leading to structural damage, ulceration, and osteomyelitis. Pulsed electromagnetic field (PEMF) therapy is a promising treatment modality for wound healing and bone metabolism.

Objective: To evaluate the efficacy of PEMF therapy in promoting bone growth and ulcer healing in patients with Charcot foot ulcers.

View Article and Find Full Text PDF

Background: Initially limited to inpatient use, negative pressure wound therapy (NPWT) is now frequently used in community settings. However, complexities in wound management step-down strategies in the United Kingdom, including regional variations in referral processes, lack of consensus on funding criteria, and limited availability of NPWT units, have led to extended hospital length of stay (LOS) for patients ready for discharge but still needing NPWT. Single-use NPWT (sNPWT) can serve as a bridge between hospital and community NPWT.

View Article and Find Full Text PDF

Background: This retrospective analysis is a derivative cohort study based on a prior retrospective investigation by this author group.

Objective: To assess the effect of the number of cellular and/or tissue-based product (CTP) applications on healing outcomes and wound area reduction (WAR) rates in patients with chronic wounds of multiple etiologies.

Methods: Data from a multicenter private wound care practice electronic health record database were analyzed for Medicare patients receiving CTPs from January 2018 through December 2023.

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFUs) are a major clinical challenge, particularly among patients with refractory ulcers, that often lead to severe complications such as infection, amputation, and high mortality. Innovations supported by strong clinical evidence have the potential to improve healing outcomes, enhance quality of life, and reduce the economic burden on individuals and health care systems.

Objective: To describe the design of the concurrent optical and magnetic stimulation (COMS) therapy Investigational Device Exemption (IDE) study for refractory DFUs (MAVERICKS) trial.

View Article and Find Full Text PDF

Lucilia sericata (Meigen, 1826) maggot excretions/secretions (ES) have demonstrated anti-inflammatory and wound healing potential on corneal epithelial cells. This study aimed to evaluate the in vitro antibacterial potential of the ES against clinically relevant Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus epidermidis in the presence of human tear fluid. The ES was collected from sterile first- and second-instar L.

View Article and Find Full Text PDF