Sustainable Synthesis of Adipic Acid via MnO-Catalyzed Electrooxidation of Cyclohexanol in Neutral Electrolyte.

Molecules

Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adipic acid (AA), a pivotal precursor for nylon-6,6 and polyurethane, was synthesized via an innovative catalytic electrocatalytic oxidation strategy in this study. Four distinct MnO/CNT nanocatalysts were prepared by hydrothermal and co-precipitation methods and fabricated into electrodes for the oxidation of cyclohexanol (Cy-OH) in a KSO neutral solution. Comprehensive characterization revealed that the catalytic performance depended on both crystalline phase configuration and manganese valence states. MnO(OH) and MnO were identified as the main active species, with the synergy between MnO species and carbon nanotubes significantly enhancing catalytic activity. Mechanistic investigations demonstrated that under Mn-dominant conditions, low-valence manganese species facilitated Cy-OH-to-cyclohexanone (Cy=O) conversion, while an optimal O/O ratio (≈1) effectively promoted subsequent Cy=O oxidation to AA. Under optimized conditions (1.25 V vs. Ag/AgCl, 80 °C, 15 h), complete Cy-OH conversion was achieved with 56.4% AA yield and exceptional Faradaic efficiency exceeding 94%. This work elucidates manganese-based electrocatalytic oxidation mechanisms, proposes a sequential reaction pathway, and establishes an environmentally benign synthesis protocol for AA, advancing sustainable industrial chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299911PMC
http://dx.doi.org/10.3390/molecules30142937DOI Listing

Publication Analysis

Top Keywords

adipic acid
8
electrocatalytic oxidation
8
sustainable synthesis
4
synthesis adipic
4
acid mno-catalyzed
4
mno-catalyzed electrooxidation
4
electrooxidation cyclohexanol
4
cyclohexanol neutral
4
neutral electrolyte
4
electrolyte adipic
4

Similar Publications

Molecular functionalization of Ni(OH) promotes electrosynthesis of adipic acid.

Chem Sci

August 2025

Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Synergistic Chem-Bio Synthesis, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China

Adipic acid is an essential platform molecule for polymer production and is industrially manufactured by thermochemical oxidation of the cyclohexanone/cyclohexanol mixture (KA oil). Alternatively, electrifying provides a green and sustainable route to synthesizing adipic acid, but has been restricted by the low catalytic efficiency. Herein, we report that a nickel hydroxide electrocatalyst functionalized with 4,4'-bipyridine (Bipy-Ni(OH)) delivers a 3-fold greater productivity compared with that of pristine Ni(OH), achieving an excellent yield (90%) towards efficient adipic acid electrosynthesis.

View Article and Find Full Text PDF

Objective: This research aimed to investigate the compatibility of the Ketoconazole-Adipic Acid (KTZ-AA) co-crystal, which exhibits an improved dissolution profile over pure Ketoconazole, with various solid pharmaceutical excipients, as well as its in silico antifungal potential.

Methods: Binary physical mixtures (1:1 w/w) of KTZ-AA co-crystal and excipients were analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD). The molecular docking study targeting the sterol 14α-demethylase (CYP51) enzyme of the pathogenic yeast Candida albicans was performed.

View Article and Find Full Text PDF

Unlocking the Full Potential of SERS: Merging Direct and Indirect Approaches for Enhanced Analysis of Multiplex Plasticizer Analogs in Matrices.

Angew Chem Int Ed Engl

September 2025

Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.

Rapid and accurate identification of harmful plasticizer analogs in their native matrix is crucial for contaminant monitoring across industries. Surface-enhanced Raman scattering (SERS) shows promise for detecting structurally similar analogs but faces challenges like subtle receptor signal changes and distortion with weakly adsorbing plasticizer analytes. We address these limitations by integrating direct and indirect SERS to capture intrinsic Raman signals and receptor-analyte interactions, achieving 100% classification accuracy eight plasticizer analogs and multiplex quantification of three major plasticizers extracted from canola oil with < 5% predictive errors at a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

To date, more biodegradable polymers have been developed due to the growing recognition of the advantages of biodegradable and biocompatible polymers for biomedical applications. In this study, we introduce the synthesis and characterization of innovative polymers that incorporate biodegradable backbones composed of trimethylolpropane and adipic acid moieties and biocleavable side chains containing pyridyl disulfide groups. Notably, their synthesis is straightforward and catalyst-free under ambient conditions, minimizing potential toxicity and immune responses caused by catalyst residues in polymer materials.

View Article and Find Full Text PDF

Airborne particulate matter of different size ranges, including the ultrafine fraction (PM), were collected in three e-waste treatment plants processing products and equipment of different technological levels. The extraction and analysis by GC/MS of seven classes of plastic additives, including phthalates, and non-phthalates additives (terephthalates, adipates, citrates, sebacates, trimellitates, and benzoates) was performed. Phthalate concentrations in PM and in PM were in the range 0.

View Article and Find Full Text PDF